3 resultados para Activation function-1
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
In this paper a new double-wavelet neuron architecture obtained by modification of standard wavelet neuron, and its learning algorithm are proposed. The offered architecture allows to improve the approximation properties of wavelet neuron. Double-wavelet neuron and its learning algorithm are examined for forecasting non-stationary chaotic time series.
Resumo:
This paper describes the followed methodology to automatically generate titles for a corpus of questions that belong to sociological opinion polls. Titles for questions have a twofold function: (1) they are the input of user searches and (2) they inform about the whole contents of the question and possible answer options. Thus, generation of titles can be considered as a case of automatic summarization. However, the fact that summarization had to be performed over very short texts together with the aforementioned quality conditions imposed on new generated titles led the authors to follow knowledge-rich and domain-dependent strategies for summarization, disregarding the more frequent extractive techniques for summarization.
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.