61 resultados para ADJOINT ELLIPTIC-OPERATORS
em Bulgarian Digital Mathematics Library at IMI-BAS
Resumo:
2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.
Resumo:
2002 Mathematics Subject Classification: 35S15, 35J70, 35J40, 38J40
Resumo:
2010 Mathematics Subject Classification: Primary 35S05; Secondary 35A17.
Resumo:
The general ordinary quasi-differential expression M of n-th order with complex coefficients and its formal adjoint M + are considered over a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator may have a finite number of singular points. By considering M over various subintervals on which singularities occur only at the ends, restrictions of the maximal operator generated by M in L2|w (a, b) which are regularly solvable with respect to the minimal operators T0 (M ) and T0 (M + ). In addition to direct sums of regularly solvable operators defined on the separate subintervals, there are other regularly solvable restrications of the maximal operator which involve linking the various intervals together in interface like style.
Resumo:
2010 Mathematics Subject Classification: 35B65, 35S05, 35A20.
Resumo:
2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50
Resumo:
2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.
Resumo:
The aim of this paper is to study a generalized form of elliptic-type integrals which unify and extend various families of elliptic-type integrals studied recently by several authors. In a recent communication [1] we have obtained recurrence relations and asymptotic formula for this generalized elliptic-type integral. Here we shall obtain some more results which are single and multiple integral formulae, differentiation formula, fractional integral and approximations for this class of generalized elliptic-type integrals.
Resumo:
We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
* Partially supported by Grant MM-428/94 of MESC.
Resumo:
A new, unified presentation of the ideal norms of factorization of operators through Banach lattices and related ideal norms is given.
Resumo:
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.