3 resultados para 3D Protein Modeling

em Bulgarian Digital Mathematics Library at IMI-BAS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer modeling is a perspective method for optimal design of prosthesis and orthoses. The study is oriented to develop modular ankle foot orthosis (MAFO) to assist the very frequently observed gait abnormalities relating the human ankle-foot complex using CAD modeling. The main goal is to assist the ankle- foot flexors and extensors during the gait cycle (stance and swing) using torsion spring. Utilizing 3D modeling and animating open source software (Blender 3D), it is possible to generate artificially different kind of normal and abnormal gaits and investigate and adjust the assistive modular spring driven ankle foot orthosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computing the similarity between two protein structures is a crucial task in molecular biology, and has been extensively investigated. Many protein structure comparison methods can be modeled as maximum weighted clique problems in specific k-partite graphs, referred here as alignment graphs. In this paper we present both a new integer programming formulation for solving such clique problems and a dedicated branch and bound algorithm for solving the maximum cardinality clique problem. Both approaches have been integrated in VAST, a software for aligning protein 3D structures largely used in the National Center for Biotechnology Information, an original clique solver which uses the well known Bron and Kerbosch algorithm (BK). Our computational results on real protein alignment instances show that our branch and bound algorithm is up to 116 times faster than BK.