216 resultados para foundations of mathematics
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91.
Resumo:
The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching processes are built up from single-line processes, whereas the regular ones are mixtures of left-tail trivial processes with a Poisson family structure.
Resumo:
* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95.
Resumo:
Let (X, d) be a metric space and CL(X) the family of all nonempty closed subsets of X. We provide a new proof of the fact that the coincidence of the Vietoris and Wijsman topologies induced by the metric d forces X to be a compact space. In the literature only a more involved and indirect proof using the proximal topology is known. Here we do not need this intermediate step. Moreover we prove that (X, d) is boundedly compact if and only if the bounded Vietoris and Wijsman topologies on CL(X) coincide.
Resumo:
The aim of our present note is to show the strength of the existence of an equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth renormings. It was Haydon who first showed in [8] that C(K) spaces for K countable admit an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent C∞-Fréchet smooth norm. Recently, it was shown in [3] that C(K) spaces for K countable admit an equivalent analytic norm. Our Theorem 1 shows that in the class of C(K) spaces this result is the best possible.
Resumo:
We extend the results in [5] to non-compactly supported perturbations for a class of symmetric first order systems.
Resumo:
There are four resolvable Steiner triple systems on fifteen elements. Some generalizations of these systems are presented here.
Resumo:
The first motivation for this note is to obtain a general version of the following result: let E be a Banach space and f : E → R be a differentiable function, bounded below and satisfying the Palais-Smale condition; then, f is coercive, i.e., f(x) goes to infinity as ||x|| goes to infinity. In recent years, many variants and extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references therein. A general result of this type was given in [3, Theorem 5.1] for a lower semicontinuous function defined on a Banach space, through an approach based on an abstract notion of subdifferential operator, and taking into account the “smoothness” of the Banach space. Here, we give (Theorem 1) an extension in a metric setting, based on the notion of slope from [11] and coercivity is considered in a generalized sense, inspired by [9]; our result allows to recover, for example, the coercivity result of [19], where a weakened version of the Palais-Smale condition is used. Our main tool (Proposition 1) is a consequence of Ekeland’s variational principle extending [12, Corollary 3.4], and deals with a function f which is, in some sense, the “uniform” Γ-limit of a sequence of functions.
Resumo:
The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.
Resumo:
The present paper investigates the existence of integral manifolds for impulsive differential equations with variable perturbations. By means of piecewise continuous functions which are generalizations of the classical Lyapunov’s functions, sufficient conditions for the existence of integral manifolds of such equations are found.
Resumo:
We prove that in quadratic perturbations of generic Hamiltonian vector fields with two saddle points and one center there can appear at most two limit cycles. This bound is exact.
Resumo:
In this paper we study a nonlinear evolution inclusion of subdifferential type in Hilbert spaces. The perturbation term is Hausdorff continuous in the state variable and has closed but not necessarily convex values. Our result is a stochastic generalization of an existence theorem proved by Kravvaritis and Papageorgiou in [6].
Resumo:
∗The author was partially supported by Alexander von Humboldt Foundation and the Contract MM-516 with the Bulgarian Ministry of Education, Science and Thechnology.
Resumo:
* This work was supported by the CNR while the author was visiting the University of Milan.