216 resultados para foundations of mathematics
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Contract No MM 1405. Part of the results were announced at the Fifth International Workshop on Optimal Codes and Related Topics (OCRT), White Lagoon, June 2007, Bulgaria
Resumo:
We give the necessary and sufficient conditions for the extendability of ternary linear codes of dimension k ≥ 5 with minimum distance d ≡ 1 or 2 (mod 3) from a geometrical point of view.
Resumo:
Partially supported by the Bulgarian Science Fund contract with TU Varna, No 487.
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96.
Resumo:
Research partially supported by a grant of Caja de Ahorros del Mediterraneo.
Resumo:
A simpler proof of a result of Burq [1] is presented.
Resumo:
We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.
Resumo:
If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.
Resumo:
It is proved that there exists a bijection between the primitive ideals of the algebra of regular functions on quantum m × n-matrices and the symplectic leaves of associated Poisson structure.
Resumo:
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
Resumo:
Pólya’s fundamental enumeration theorem and some results from Williamson’s generalized setup of it are proved in terms of Schur- Macdonald’s theory (S-MT) of “invariant matrices”. Given a permutation group W ≤ Sd and a one-dimensional character χ of W , the polynomial functor Fχ corresponding via S-MT to the induced monomial representation Uχ = ind|Sdv/W (χ) of Sd , is studied. It turns out that the characteristic ch(Fχ ) is the weighted inventory of some set J(χ) of W -orbits in the integer-valued hypercube [0, ∞)d . The elements of J(χ) can be distinguished among all W -orbits by a maximum property. The identity ch(Fχ ) = ch(Uχ ) of both characteristics is a consequence of S-MT, and is equivalent to a result of Williamson. Pólya’s theorem can be obtained from the above identity by the specialization χ = 1W , where 1W is the unit character of W.
Resumo:
Partially supported by grant RFFI 98-01-01020.
Resumo:
Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.
Resumo:
It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.