60 resultados para Generalized convexity
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.
Resumo:
2010 Mathematics Subject Classification: 62F12, 62M05, 62M09, 62M10, 60G42.
Resumo:
2000 Mathematics Subject Classification: 35P25, 35R30, 58J50.
Resumo:
2000 Mathematics Subject Classification: 47H04, 65K10.
Resumo:
2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.
Resumo:
2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30.
Resumo:
MSC 2010: 46F30, 46F10
Resumo:
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.
Resumo:
2000 Mathematics Subject Classification: 46B20.
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
MSC 2010: 11B83, 05A19, 33C45
Resumo:
MSC2010: 30C45, 33C45
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.
Resumo:
2000 Mathematics Subject Classification: 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.
Resumo:
2010 Mathematics Subject Classification: 47A10.