65 resultados para Extremal polynomial ultraspherical polynomials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 16R50, 16R10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Георги С. Бойчев - В статията се разглежда метод за сумиране на редове, дефиниран чрез полиномите на Ермит. За този метод на сумиране са дадени някои Тауберови теореми.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the limit behaviour of the sequence of extremal processes under a regularity condition on the norming sequence ζn and asymptotic negligibility of the max-increments of Yn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60G70, 62F03.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60G70, 60G18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 41A25, 41A35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 05E05, 14N10, 57R45.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 14N10, 14C17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 30A10, 30C10, 30C80, 30D15, 41A17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: Primary 33C45, 40A30; Secondary 26D07, 40C10