50 resultados para semigroups of bounded linear operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 44A45, 44A40, 65J10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 35S05; Secondary 35A17.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35Q15, 31A25, 37K10, 35Q58.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 35R60, 60H15, 74H35.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35J70, 35P15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general ordinary quasi-differential expression M of n-th order with complex coefficients and its formal adjoint M + are considered over a regoin (a, b) on the real line, −∞ ≤ a < b ≤ ∞, on which the operator may have a finite number of singular points. By considering M over various subintervals on which singularities occur only at the ends, restrictions of the maximal operator generated by M in L2|w (a, b) which are regularly solvable with respect to the minimal operators T0 (M ) and T0 (M + ). In addition to direct sums of regularly solvable operators defined on the separate subintervals, there are other regularly solvable restrications of the maximal operator which involve linking the various intervals together in interface like style.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a survey of our recent results on the bispectral problem. We describe a new method for constructing bispectral algebras of any rank and illustrate the method by a series of new examples as well as by all previously known ones. Next we exhibit a close connection of the bispectral problem to the representation theory of W1+∞–algerba. This connection allows us to explain and generalise to any rank the result of Magri and Zubelli on the symmetries of the manifold of the bispectral operators of rank and order two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Partially supported by Grant MM-428/94 of MESC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point (x = 0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.