66 resultados para Riesz, Fractional Diffusion, Equation, Explicit Difference, Scheme, Stability, Convergence
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
In this paper we propose an optimized algorithm, which is faster compared to previously described finite difference acceleration scheme, namely the Modified Super-Time-Stepping (Modified STS) scheme for age- structured population models with diffusion.
Resumo:
Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...
Resumo:
2000 Mathematics Subject Classification: 26A33, 42B20
Resumo:
MSC 2010: 34A08 (main), 34G20, 80A25
Resumo:
Дойчин Бояджиев, Галена Пеловска - В статията се предлага оптимизиран алгоритъм, който е по-бърз в сравнение с по- рано описаната ускорена (модифицирана STS) диференчна схема за възрастово структуриран популационен модел с дифузия. Запазвайки апроксимацията на модифицирания STS алгоритъм, изчислителното времето се намаля почти два пъти. Това прави оптимизирания метод по-предпочитан за задачи с нелинейност или с по-висока размерност.
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
Mathematics Subject Classification: 42B35, 35L35, 35K35
Resumo:
Mathematics Subject Classification: 44A40, 45B05
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C45
Well-Posedness of the Cauchy Problem for Inhomogeneous Time-Fractional Pseudo-Differential Equations
Resumo:
Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12
Resumo:
2000 Mathematics Subject Classification: 42B20, 42B25, 42B35
Resumo:
Mathematics Subject Classification: 35CXX, 26A33, 35S10
Resumo:
2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35