73 resultados para Legendre polynomials
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
Determination of the so-called optical constants (complex refractive index N, which is usually a function of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their use, compared to the Selmeier, Lorentz or Cauchy models.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
In 2000 A. Alesina and M. Galuzzi presented Vincent’s theorem “from a modern point of view” along with two new bisection methods derived from it, B and C. Their profound understanding of Vincent’s theorem is responsible for simplicity — the characteristic property of these two methods. In this paper we compare the performance of these two new bisection methods — i.e. the time they take, as well as the number of intervals they examine in order to isolate the real roots of polynomials — against that of the well-known Vincent-Collins-Akritas method, which is the first bisection method derived from Vincent’s theorem back in 1976. Experimental results indicate that REL, the fastest implementation of the Vincent-Collins-Akritas method, is still the fastest of the three bisection methods, but the number of intervals it examines is almost the same as that of B. Therefore, further research on speeding up B while preserving its simplicity looks promising.
Resumo:
Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution of the coset leaders as a suitable cyclic code.
Resumo:
In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions with a given arity gap. The Full Conjunctive Normal Forms are also sum of conjunctions, in which all variables occur.
Resumo:
It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.
Resumo:
We solve the functional equation f(x^m + y) = f(x)^m + f(y) in the realm of polynomials with integer coefficients.
Resumo:
This paper surveys parts of the study of divisibility properties of codes. The survey begins with the motivating background involving polynomials over finite fields. Then it presents recent results on bounds and applications to optimal codes.
Resumo:
A group-theoretic method of obtaining more general class of generating functions from a given class of partial quasi-bilateral generating functions involving Hermite, Laguerre and Gegenbaur polynomials are discussed.
Resumo:
* Part of this work was done while the second author was on a visit at Tel Aviv University in March 2001
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
* This work was supported by the CNR while the author was visiting the University of Milan.
Resumo:
* Dedicated to the memory of Prof. N. Obreshkoff