68 resultados para LC Classification System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of essential variables in symmetric functions with non-trivial arity gap are separable. ACM Computing Classification System (1998): G.2.0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a test for identifying clusters in high dimensional data based on the k-means algorithm when the null hypothesis is spherical normal. We show that projection techniques used for evaluating validity of clusters may be misleading for such data. In particular, we demonstrate that increasingly well-separated clusters are identified as the dimensionality increases, when no such clusters exist. Furthermore, in a case of true bimodality, increasing the dimensionality makes identifying the correct clusters more difficult. In addition to the original conservative test, we propose a practical test with the same asymptotic behavior that performs well for a moderate number of points and moderate dimensionality. ACM Computing Classification System (1998): I.5.3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resolutions which are orthogonal to at least one other resolution (RORs) and sets of m mutually orthogonal resolutions (m-MORs) of 2-(v, k, λ) designs are considered. A dependence of the number of nonisomorphic RORs and m-MORs of multiple designs on the number of inequivalent sets of v/k − 1 mutually orthogonal latin squares (MOLS) of size m is obtained. ACM Computing Classification System (1998): G.2.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we compute some bounds of the Balaban index and then by means of group action we compute the Balaban index of vertex transitive graphs. ACM Computing Classification System (1998): G.2.2 , F.2.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional programming has a lot to offer to the developers of global Internet-centric applications, but is often applicable only to a small part of the system or requires major architectural changes. The data model used for functional computation is often simply considered a consequence of the chosen programming style, although inappropriate choice of such model can make integration with imperative parts much harder. In this paper we do the opposite: we start from a data model based on JSON and then derive the functional approach from it. We outline the identified principles and present Jsonya/fn — a low-level functional language that is defined in and operates with the selected data model. We use several Jsonya/fn implementations and the architecture of a recently developed application to show that our approach can improve interoperability and can achieve additional reuse of representations and operations at relatively low cost. ACM Computing Classification System (1998): D.3.2, D.3.4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents a study that focuses on the issue of sup-porting educational experts to choose the right combination of educational methodology and technology tools when designing training and learning programs. It is based on research in the field of adaptive intelligent e-learning systems. The object of study is the professional growth of teachers in technology and in particular that part of their qualification which is achieved by organizing targeted training of teachers. The article presents the process of creating and testing a system to support the decision on the design of training for teachers, leading to more effective implementation of technology in education and integration in diverse educational contexts. ACM Computing Classification System (1998): H.4.2, I.2.1, I.2, I.2.4, F.4.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): E.4, C.2.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.2.2, F.2.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): H.2.1, H.2.4, H.2.8, H.3.7, J.5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): F.4.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The “trial and error” method is fundamental for Master Minddecision algorithms. On the basis of Master Mind games and strategies weconsider some data mining methods for tests using students as teachers.Voting, twins, opposite, simulate and observer methods are investigated.For a pure data base these combinatorial algorithms are faster then manyAI and Master Mind methods. The complexities of these algorithms arecompared with basic combinatorial methods in AI. ACM Computing Classification System (1998): F.3.2, G.2.1, H.2.1, H.2.8, I.2.6.