53 resultados para Inverse problems (Differential equations)
Resumo:
2002 Mathematics Subject Classification: 35S05
Resumo:
2002 Mathematics Subject Classification: 35S05
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
2000 Mathematics Subject Classification: 34K15, 34C10.
Resumo:
2000 Mathematics Subject Classification: 34C10, 34C15.
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
The present article discusses units of measure and their base units, work environments built in the Units package of the computer algebra system Maple. An analysis is drawn of the tools of the application in connection with the use of physical quantities and their features. Maple’s main commands are arranged in groups depending on the function. Some applied mathematical problems are given as examples making use of derivative, integral and differential equations.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
2000 Mathematics Subject Classification: 42C05.
Resumo:
In this article on quasidifferential equation with non-fixed time of impulses we consider the continuous dependence of the solutions on the initial conditions as well as the mappings defined by these equations. We prove general theorems for quasidifferential equations from which follows corresponding results for differential equations, differential inclusion and equations with Hukuhara derivative.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 35S10, 86A05
Resumo:
Mathematics Subject Classification: 26A33, 76M35, 82B31
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05