66 resultados para Integrals, Generalized.
Resumo:
AMS Subj. Classification: 90C27, 05C85, 90C59
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
The paper provides a review of A.M. Mathai's applications of the theory of special functions, particularly generalized hypergeometric functions, to problems in stellar physics and formation of structure in the Universe and to questions related to reaction, diffusion, and reaction-diffusion models. The essay also highlights Mathai's recent work on entropic, distributional, and differential pathways to basic concepts in statistical mechanics, making use of his earlier research results in information and statistical distribution theory. The results presented in the essay cover a period of time in Mathai's research from 1982 to 2008 and are all related to the thematic area of the gravitationally stabilized solar fusion reactor and fractional reaction-diffusion, taking into account concepts of non-extensive statistical mechanics. The time period referred to above coincides also with Mathai's exceptional contributions to the establishment and operation of the Centre for Mathematical Sciences, India, as well as the holding of the United Nations (UN)/European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) of the United States/ Japanese Aerospace Exploration Agency (JAXA) Workshops on basic space science and the International Heliophysical Year 2007, around the world. Professor Mathai's contributions to the latter, since 1991, are a testimony for his social con-science applied to international scientific activity.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
MSC 2010: 30C45, 30A20, 34A40
Resumo:
MSC 2010: 03E72, 26E50, 28E10
Resumo:
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.
Resumo:
2000 Mathematics Subject Classification: Primary 34C07, secondary 34C08.
Resumo:
2000 Mathematics Subject Classification: 41A25, 41A27, 41A36.
Resumo:
Асен Божилов, Недялко Ненов - Нека G е n-върхов граф и редицата от степените на върховете му е d1, d2, . . . , dn, а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v). Най-малкото естествено число r, за което V(G) има r-разлагане V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, , i 6 = j такова, че d(v) ≤ n − |Vi|, ∀v ∈ Vi, i = 1, 2, . . . , r е означено с ϕ(G). В тази работа доказваме неравенството ...
Resumo:
Магдалина Василева Тодорова - В статията е описан подход за верификация на процедурни програми чрез изграждане на техни модели, дефинирани чрез обобщени мрежи. Подходът интегрира концепцията “design by contract” с подходи за верификация от тип доказателство на теореми и проверка на съгласуваност на модели. За целта разделно се верифицират функциите, които изграждат програмата относно спецификации според предназначението им. Изгражда се обобщен мрежов модел, специфициащ връзките между функциите във вид на коректни редици от извиквания. За главната функция на програмата се построява обобщен мрежов модел и се проверява дали той съответства на мрежовия модел на връзките между функциите на програмата. Всяка от функциите на програмата, която използва други функции се верифицира и относно спецификацията, зададена чрез мрежовия модел на връзките между функциите на програмата.
Resumo:
2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.
Resumo:
2010 Mathematics Subject Classification: 41A25, 41A10.