37 resultados para Convex Arcs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of minimizing the max of two convex functions from both approximation and sensitivity point of view.This lead up to study the epiconvergence of a sequence of level sums of convex functions and the related dual problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.