56 resultados para zeros of polynomials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is (1) to highlight some recent and heretofore unpublished results in the theory of multiplier sequences and (2) to survey some open problems in this area of research. For the sake of clarity of exposition, we have grouped the problems in three subsections, although several of the problems are interrelated. For the reader’s convenience, we have included the pertinent definitions, cited references and related results, and in several instances, elucidated the problems by examples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is dedicated to Prof. Nikolay Kyurkchiev on the occasion of his 70th anniversary This paper gives sufficient conditions for kth approximations of the zeros of polynomial f (x) under which Kyurkchiev’s method fails on the next step. The research is linked with an attack on the global convergence hypothesis of this commonly used in practice method (as correlate hypothesis for Weierstrass–Dochev’s method). Graphical examples are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2000 A. Alesina and M. Galuzzi presented Vincent’s theorem “from a modern point of view” along with two new bisection methods derived from it, B and C. Their profound understanding of Vincent’s theorem is responsible for simplicity — the characteristic property of these two methods. In this paper we compare the performance of these two new bisection methods — i.e. the time they take, as well as the number of intervals they examine in order to isolate the real roots of polynomials — against that of the well-known Vincent-Collins-Akritas method, which is the first bisection method derived from Vincent’s theorem back in 1976. Experimental results indicate that REL, the fastest implementation of the Vincent-Collins-Akritas method, is still the fastest of the three bisection methods, but the number of intervals it examines is almost the same as that of B. Therefore, further research on speeding up B while preserving its simplicity looks promising.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We solve the functional equation f(x^m + y) = f(x)^m + f(y) in the realm of polynomials with integer coefficients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The following problem, suggested by Laguerre’s Theorem (1884), remains open: Characterize all real sequences {μk} k=0...∞ which have the zero-diminishing property; that is, if k=0...n, p(x) = ∑(ak x^k) is any P real polynomial, then k=0...n, p(x) = ∑(μk ak x^k) has no more real zeros than p(x). In this paper this problem is solved under the additional assumption of a weak growth condition on the sequence {μk} k=0...∞, namely lim n→∞ | μn |^(1/n) < ∞. More precisely, it is established that the real sequence {μk} k≥0 is a weakly increasing zerodiminishing sequence if and only if there exists σ ∈ {+1,−1} and an entire function n≥1, Φ(z)= be^(az) ∏(1+ x/αn), a, b ∈ R^1, b =0, αn > 0 ∀n ≥ 1, ∑(1/αn) < ∞, such that µk = (σ^k)/Φ(k), ∀k ≥ 0.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex- pansion of √fk (X) is related to that of √C, where √fk (X) = ak*X^2 +bk*X + C. This continues work in [1]–[4].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

∗ Research partially supported by INTAS grant 97-1644

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* The author was supported by NSF Grant No. DMS 9706883.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C45

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Георги С. Бойчев - В статията се разглежда метод за сумиране на редове, дефиниран чрез полиномите на Ермит. За този метод на сумиране са дадени някои Тауберови теореми.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s little known and hardly ever used matrix of 1853, to compute(2) the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] of degree n — in terms of the determinants (3) of the corresponding submatrices of sylvester2. Thus, they solved a problem that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900. (4) In this paper we extend the work by Pell and Gordon and show how to compute (2) the coefficients of an Euclidean remainder — obtained in finding in Q[x], the greatest common divisor of f, g ∈ Z[x] of degree n — in terms of the determinants (5) of the corresponding submatrices of sylvester1, Sylvester’s widely known and used matrix of 1840. (1) See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biography (2) Both for complete and incomplete sequences, as defined in the sequel. (3) Also known as modified subresultants. (4) Using determinants Sylvester and Van Vleck were able to compute the coefficients of Sturmian remainders only for the case of complete sequences. (5) Also known as (proper) subresultants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MSC 2010: 41A25, 41A35