20 resultados para Porosity. GPR. Intelligent system. Artificial neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of convolutional (Hamming) version of recent Neural Network Assembly Memory Model (NNAMM) for intact two-layer autoassociative Hopfield network optimal receiver operating characteristics (ROCs) have been derived analytically. A method of taking into account explicitly a priori probabilities of alternative hypotheses on the structure of information initiating memory trace retrieval and modified ROCs (mROCs, a posteriori probabilities of correct recall vs. false alarm probability) are introduced. The comparison of empirical and calculated ROCs (or mROCs) demonstrates that they coincide quantitatively and in this way intensities of cues used in appropriate experiments may be estimated. It has been found that basic ROC properties which are one of experimental findings underpinning dual-process models of recognition memory can be explained within our one-factor NNAMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a prototype of the intelligent system of the hearing investigation developed by the Tver State Technical University. The problem of automatic diagnostics, considered as the recognition problem of object not completely determined on set of the diseases classes’ descriptions, is discussed. The management strategy of the hearing investigation is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper new non-conventional growing neural network is proposed. It coincides with the Cascade- Correlation Learning Architecture structurally, but uses ortho-neurons as basic structure units, which can be adjusted using linear tuning procedures. As compared with conventional approximating neural networks proposed approach allows significantly to reduce time required for weight coefficients adjustment and the training dataset size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many organic compounds cause an irreversible damage to human health and the ecosystem and are present in water resources. Among these hazard substances, phenolic compounds play an important role on the actual contamination. Utilization of membrane technology is increasing exponentially in drinking water production and waste water treatment. The removal of organic compounds by nanofiltration membranes is characterized not only by molecular sieving effects but also by membrane-solute interactions. Influence of the sieving parameters (molecular weight and molecular diameter) and the physicochemical interactions (dissociation constant and molecular hydrophobicity) on the membrane rejection of the organic solutes were studied. The molecular hydrophobicity is expressed as logarithm of octanol-water partition coefficient. This paper proposes a method used that can be used for symbolic knowledge extraction from a trained neural network, once they have been trained with the desired performance and is based on detect the more important variables in problems where exist multicolineality among the input variables.