69 resultados para Polynomials.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Георги С. Бойчев - В статията се разглежда метод за сумиране на редове, дефиниран чрез полиномите на Ермит. За този метод на сумиране са дадени някои Тауберови теореми.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s little known and hardly ever used matrix of 1853, to compute(2) the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] of degree n — in terms of the determinants (3) of the corresponding submatrices of sylvester2. Thus, they solved a problem that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900. (4) In this paper we extend the work by Pell and Gordon and show how to compute (2) the coefficients of an Euclidean remainder — obtained in finding in Q[x], the greatest common divisor of f, g ∈ Z[x] of degree n — in terms of the determinants (5) of the corresponding submatrices of sylvester1, Sylvester’s widely known and used matrix of 1840. (1) See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biography (2) Both for complete and incomplete sequences, as defined in the sequel. (3) Also known as modified subresultants. (4) Using determinants Sylvester and Van Vleck were able to compute the coefficients of Sturmian remainders only for the case of complete sequences. (5) Also known as (proper) subresultants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 41A25, 41A35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 05E05, 14N10, 57R45.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26C05, 26C10, 30A12, 30D15, 42A05, 42C05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 14N10, 14C17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 30A10, 30C10, 30C80, 30D15, 41A17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 30C10, 32A30, 30G35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: Primary 33C45, 40A30; Secondary 26D07, 40C10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A10, 30E10, 41A65.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of the so-called optical constants (complex refractive index N, which is usually a function of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their use, compared to the Selmeier, Lorentz or Cauchy models.