21 resultados para Multilayer perceptron neural networks
Resumo:
Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.
Resumo:
In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.
Resumo:
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Resumo:
The problem of multi-agent routing in static telecommunication networks with fixed configuration is considered. The problem is formulated in two ways: for centralized routing schema with the coordinator-agent (global routing) and for distributed routing schema with independent agents (local routing). For both schemas appropriate Hopfield neural networks (HNN) are constructed.
Resumo:
An experimental comparison of information features used by neural network is performed. The sensing method was used. Suboptimal classifier agreeable to the gaussian model of the training data was used as a probe. Neural nets with architectures of perceptron and feedforward net with one hidden layer were used. The experiments were carried out with spatial ultrasonic data, which are used for car’s passenger safety system neural controller learning. In this paper we show that a neural network doesn’t fully make use of gaussian components, which are first two moment coefficients of probability distribution. On the contrary, the network can find more complicated regularities inside data vectors and thus shows better results than suboptimal classifier. The parallel connection of suboptimal classifier improves work of modular neural network whereas its connection to the network input improves the specialization effect during training.