20 resultados para Multi-objective genetic algorithm
Resumo:
AMS Subj. Classification: 62P10, 62H30, 68T01
Resumo:
In this paper a variable neighborhood search (VNS) approach for the task assignment problem (TAP) is considered. An appropriate neighborhood scheme along with a shaking operator and local search procedure are constructed specifically for this problem. The computational results are presented for the instances from the literature, and compared to optimal solutions obtained by the CPLEX solver and heuristic solutions generated by the genetic algorithm. It can be seen that the proposed VNS approach reaches all optimal solutions in a quite short amount of computational time.
Resumo:
Силвия К. Баева, Цветана Хр. Недева - Важен аспект в системата на Министерството на регионалното развитие и благоустройство е работата по Оперативна програма “Регионално развитие” с приоритетна ос “Устойчиво и интегрирано градско развитие” по операция “Подобряване на физическата среда и превенция на риска”. По тази програма са включени 86 общини. Финансовият ресурс на тази операция е на стойност 238 589 939 евро, от които 202 801 448 евро са европейско финансиране [1]. Всяка от тези 86 общини трябва да реши задачата за възлагане на обществена поръчка на определена фирма по тази операция. Всъщност, тази задача е задача за провеждане на общински търг за избор на фирма-изпълнител. Оптималният избор на фирма-изпълнител е много важен. Задачата за провеждане на търг ще формулираме като задача на многокритериалното вземане на решения, като чрез подходящо изграждане на критерии и методи може да се трансформира до задача на еднокритериалната оптимизация.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.
Resumo:
2010 Mathematics Subject Classification: 65D18.