31 resultados para Gauss and Generalized Hypergeometric Functions
Resumo:
The aim of this paper is to study a generalized form of elliptic-type integrals which unify and extend various families of elliptic-type integrals studied recently by several authors. In a recent communication [1] we have obtained recurrence relations and asymptotic formula for this generalized elliptic-type integral. Here we shall obtain some more results which are single and multiple integral formulae, differentiation formula, fractional integral and approximations for this class of generalized elliptic-type integrals.
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.
Resumo:
In this paper, we introduce a further generalization of the gamma function involving Gauss hypergeometric function 2F1 (a, b; c; z)
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
Mathematics Subject Classification: 26A33, 33C20.
Resumo:
Mathematics Subject Classification: 33D15, 44A10, 44A20
Resumo:
MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, secondary 30C80.
Resumo:
In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions with a given arity gap. The Full Conjunctive Normal Forms are also sum of conjunctions, in which all variables occur.
Resumo:
A boundary-value problems for almost nonlinear singularly perturbed systems of ordinary differential equations are considered. An asymptotic solution is constructed under some assumption and using boundary functions and generalized inverse matrix and projectors.
Resumo:
In the area of stress-strength models there has been a large amount of work as regards estimation of the reliability R = Pr(X2 < X1 ) when X1 and X2 are independent random variables belonging to the same univariate family of distributions. The algebraic form for R = Pr(X2 < X1 ) has been worked out for the majority of the well-known distributions including Normal, uniform, exponential, gamma, weibull and pareto. However, there are still many other distributions for which the form of R is not known. We have identified at least some 30 distributions with no known form for R. In this paper we consider some of these distributions and derive the corresponding forms for the reliability R. The calculations involve the use of various special functions.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
Resumo:
2000 Mathematics Subject Classification: 33D60, 26A33, 33C60
Resumo:
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15