65 resultados para Extremal polynomial ultraspherical polynomials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the polynomials f, g ∈ Z[x] of degrees n, m, respectively, with n > m, three new, and easy to understand methods — along with the more efficient variants of the last two of them — are presented for the computation of their subresultant polynomial remainder sequence (prs). All three methods evaluate a single determinant (subresultant) of an appropriate sub-matrix of sylvester1, Sylvester’s widely known and used matrix of 1840 of dimension (m + n) × (m + n), in order to compute the correct sign of each polynomial in the sequence and — except for the second method — to force its coefficients to become subresultants. Of interest is the fact that only the first method uses pseudo remainders. The second method uses regular remainders and performs operations in Q[x], whereas the third one triangularizes sylvester2, Sylvester’s little known and hardly ever used matrix of 1853 of dimension 2n × 2n. All methods mentioned in this paper (along with their supporting functions) have been implemented in Sympy and can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1917 Pell (1) and Gordon used sylvester2, Sylvester’s little known and hardly ever used matrix of 1853, to compute(2) the coefficients of a Sturmian remainder — obtained in applying in Q[x], Sturm’s algorithm on two polynomials f, g ∈ Z[x] of degree n — in terms of the determinants (3) of the corresponding submatrices of sylvester2. Thus, they solved a problem that had eluded both J. J. Sylvester, in 1853, and E. B. Van Vleck, in 1900. (4) In this paper we extend the work by Pell and Gordon and show how to compute (2) the coefficients of an Euclidean remainder — obtained in finding in Q[x], the greatest common divisor of f, g ∈ Z[x] of degree n — in terms of the determinants (5) of the corresponding submatrices of sylvester1, Sylvester’s widely known and used matrix of 1840. (1) See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for her biography (2) Both for complete and incomplete sequences, as defined in the sequel. (3) Also known as modified subresultants. (4) Using determinants Sylvester and Van Vleck were able to compute the coefficients of Sturmian remainders only for the case of complete sequences. (5) Also known as (proper) subresultants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 30C10, 32A30, 30G35

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution of the coset leaders as a suitable cyclic code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results indicate that whereas F LQ runs on average faster (or quite faster) than LM Q, nonetheless the quality of the bounds computed by both is about the same; moreover, it was revealed that when VAS-CF is run on our benchmark polynomials using F LQ, LM Q and min(F LQ, LM Q) all three versions run equally well and, hence, it is inconclusive which one should be used in the VAS-CF method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ Partially supported by INTAS grant 97-1644

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This work was partially supported by the Bulgarian National Science Fund under Contract No. MM – 503/1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orthonormal polynomials on the real line {pn (λ)} n=0 ... ∞ satisfy the recurrent relation of the form: λn−1 pn−1 (λ) + αn pn (λ) + λn pn+1 (λ) = λpn (λ), n = 0, 1, 2, . . . , where λn > 0, αn ∈ R, n = 0, 1, . . . ; λ−1 = p−1 = 0, λ ∈ C. In this paper we study systems of polynomials {pn (λ)} n=0 ... ∞ which satisfy the equation: αn−2 pn−2 (λ) + βn−1 pn−1 (λ) + γn pn (λ) + βn pn+1 (λ) + αn pn+2 (λ) = λ2 pn (λ), n = 0, 1, 2, . . . , where αn > 0, βn ∈ C, γn ∈ R, n = 0, 1, 2, . . ., α−1 = α−2 = β−1 = 0, p−1 = p−2 = 0, p0 (λ) = 1, p1 (λ) = cλ + b, c > 0, b ∈ C, λ ∈ C. It is shown that they are orthonormal on the real and the imaginary axes in the complex plane ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* Partially supported by Universita` di Bari: progetto “Strutture algebriche, geometriche e descrizione degli invarianti ad esse associate”.