42 resultados para Descriptive Banach Space
Resumo:
AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.
Resumo:
We survey several applications of Simons’ inequality and state related open problems. We show that if a Banach space X has a strongly sub-differentiable norm, then every bounded weakly closed subset of X is an intersection of finite union of balls.
Resumo:
*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.
Resumo:
*Supported in part by GAˇ CR 201-98-1449 and AV 101 9003. This paper is based on a part of the author’s MSc thesis written under the supervison of Professor V. Zizler.
Resumo:
We prove that if E is a subset of a Banach space whose density is of measure zero and such that (E, weak) is a paracompact space, then (E, weak) is a Radon space of type (F ) under very general conditions.
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
In his paper [1], Bates investigates the existence of nonlinear, but highly smooth, surjective operators between various classes of Banach spaces. Modifying his basic method, he obtains the following striking results.
Resumo:
In this paper, we give a criterion for unconditional convergence with respect to some summability methods, dealing with the topological size of the set of choices of sign providing convergence. We obtain similar results for boundedness. In particular, quasi-sure unconditional convergence implies unconditional convergence.
Resumo:
For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.
Resumo:
*This research was supported by the National Science Foundation Grant DMS 0200187 and by ONR Grant N00014-96-1-1003
Resumo:
Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.
Resumo:
It is proved that a Banach space X has the Lyapunov property if its subspace Y and the quotient space X/Y have it.
Resumo:
* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).
Resumo:
The aim of our present note is to show the strength of the existence of an equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth renormings. It was Haydon who first showed in [8] that C(K) spaces for K countable admit an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent C∞-Fréchet smooth norm. Recently, it was shown in [3] that C(K) spaces for K countable admit an equivalent analytic norm. Our Theorem 1 shows that in the class of C(K) spaces this result is the best possible.
Resumo:
* Supported by NSERC (Canada)