27 resultados para Data classification
Resumo:
2000 Mathematics Subject Classification: 62P10, 92C40
Resumo:
2000 Mathematics Subject Classification: 62F10, 62J05, 62P30
Resumo:
2000 Mathematics Subject Classification: 62P10, 62H30
Resumo:
2000 Mathematics Subject Classification: 62H30, 62J20, 62P12, 68T99
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
ACM Computing Classification System (1998): D.2.11, D.1.3, D.3.1, J.3, C.2.4.
Resumo:
The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.
Resumo:
Computer software plays an important role in business, government, society and sciences. To solve real-world problems, it is very important to measure the quality and reliability in the software development life cycle (SDLC). Software Engineering (SE) is the computing field concerned with designing, developing, implementing, maintaining and modifying software. The present paper gives an overview of the Data Mining (DM) techniques that can be applied to various types of SE data in order to solve the challenges posed by SE tasks such as programming, bug detection, debugging and maintenance. A specific DM software is discussed, namely one of the analytical tools for analyzing data and summarizing the relationships that have been identified. The paper concludes that the proposed techniques of DM within the domain of SE could be well applied in fields such as Customer Relationship Management (CRM), eCommerce and eGovernment. ACM Computing Classification System (1998): H.2.8.
Resumo:
This research evaluates pattern recognition techniques on a subclass of big data where the dimensionality of the input space (p) is much larger than the number of observations (n). Specifically, we evaluate massive gene expression microarray cancer data where the ratio κ is less than one. We explore the statistical and computational challenges inherent in these high dimensional low sample size (HDLSS) problems and present statistical machine learning methods used to tackle and circumvent these difficulties. Regularization and kernel algorithms were explored in this research using seven datasets where κ < 1. These techniques require special attention to tuning necessitating several extensions of cross-validation to be investigated to support better predictive performance. While no single algorithm was universally the best predictor, the regularization technique produced lower test errors in five of the seven datasets studied.
Resumo:
Our modular approach to data hiding is an innovative concept in the data hiding research field. It enables the creation of modular digital watermarking methods that have extendable features and are designed for use in web applications. The methods consist of two types of modules – a basic module and an application-specific module. The basic module mainly provides features which are connected with the specific image format. As JPEG is a preferred image format on the Internet, we have put a focus on the achievement of a robust and error-free embedding and retrieval of the embedded data in JPEG images. The application-specific modules are adaptable to user requirements in the concrete web application. The experimental results of the modular data watermarking are very promising. They indicate excellent image quality, satisfactory size of the embedded data and perfect robustness against JPEG transformations with prespecified compression ratios. ACM Computing Classification System (1998): C.2.0.
Resumo:
2010 Mathematics Subject Classification: 62P10.
Resumo:
2010 Mathematics Subject Classification: 94A17.