30 resultados para Common Fixed Point
Resumo:
The nonmonotonic logic called Autoepistemic Logic is shown to be representable in a monotonic Modal Quantificational Logic whose modal laws are stronger than S5. Specifically, it is proven that a set of sentences of First Order Logic is a fixed-point of the fixed-point equation of Autoepistemic Logic with an initial set of axioms if and only if the meaning or rather disquotation of that set of sentences is logically equivalent to a particular modal functor of the meaning of that initial set of sentences. This result is important because the modal representation allows the use of powerful automatic deduction systems for Modal Logic and unlike the original Autoepistemic Logic, it is easily generalized to the case where quantified variables may be shared across the scope of modal expressions thus allowing the derivation of quantified consequences. Furthermore, this generalization properly treats such quantifiers since both the Barcan formula and its converse hold.
Resumo:
2000 Mathematics Subject Classification: Primary 26A33; Secondary 47G20, 31B05
Resumo:
Mathematics Subject Classification: 26A33, 34A60, 34K40, 93B05
Resumo:
Mathematics Subject Classification: 26A33, 34A37.
Resumo:
Mathematics Subject Classification: 45G10, 45M99, 47H09
Resumo:
We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems fast finite precision arithmetic is used. The results are absolutely rigorous. To demonstrate the power of reliable symbolic-numeric computations we investigate in some details the verification of very long periodic orbits of chaotic dynamical systems. The verification is done directly in Maple, e.g. using the Maple Power Tool intpakX or, more efficiently, using the C++ class library C-XSC.
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
Resumo:
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37
Resumo:
2000 Mathematics Subject Classification: 54C55, 54H25, 55M20.
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Иследвано е цилиндрично течение на Кует на разреден газ в случая на въртене на два коаксиални цилиндъра с еднакви по големина скорости, но в различни посоки. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – ρ, V , . Числените резултати са получени чрез използване на DSMC и числено решение на уравненията на Навие-Стокс за относително малки (дозвукови) скорости на въртене. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Установено е, че съществува “стационарна” точка за плътността и скоростта. Получените резултати са важни при решаването на неравнини, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.
Resumo:
2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.
Resumo:
2000 Mathematics Subject Classification: 65H10.
Resumo:
2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.
Resumo:
2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.