20 resultados para Combinatorial optimization algorithms
Resumo:
* This paper is partially supported by the National Science Fund of Bulgarian Ministry of Education and Science under contract № I–1401\2004 "Interactive Algorithms and Software Systems Supporting Multicriteria Decision Making".
Resumo:
Various combinatorial problems are effectively modelled in terms of (0,1) matrices. Origins are coming from n-cube geometry, hypergraph theory, inverse tomography problems, or directly from different models of application problems. Basically these problems are NP-complete. The paper considers a set of such problems and introduces approximation algorithms for their solutions applying Lagragean relaxation and related set of techniques.
Resumo:
The problem of transit points arrangement is presented in the paper. This issue is connected with accuracy of tariff distance calculation and it is the urgent problem at present. Was showed that standard method of tariff distance discovering is not optimal. The Genetic Algorithms are used in optimization problem resolution. The UML application class diagram and class content are showed. In the end the example of transit points arrangement is represented.
Resumo:
Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.
Resumo:
Methods for representing equivalence problems of various combinatorial objects as graphs or binary matrices are considered. Such representations can be used for isomorphism testing in classification or generation algorithms. Often it is easier to consider a graph or a binary matrix isomorphism problem than to implement heavy algorithms depending especially on particular combinatorial objects. Moreover, there already exist well tested algorithms for the graph isomorphism problem (nauty) and the binary matrix isomorphism problem as well (Q-Extension). ACM Computing Classification System (1998): F.2.1, G.4.