30 resultados para BORSUK-ULAM THEOREM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS subject classification: 65J15, 47H04, 90C30.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1952 Y. Tagamlitzki gave an elegant proof of the classical Bochner’s theorem on the positively definite functions. Unfortunately, he never published his proof. In this paper we consider a related but simpler problem, the trigonometric moment problem, by using Tagamlitzki’s approach.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 54A25, 54A35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 30C10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AMS Subj. Classification: 30C45

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 33C20

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C45