17 resultados para periodic perturbations
Resumo:
We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
We extend the results in [5] to non-compactly supported perturbations for a class of symmetric first order systems.
Resumo:
We prove that in quadratic perturbations of generic Hamiltonian vector fields with two saddle points and one center there can appear at most two limit cycles. This bound is exact.
Resumo:
In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.
Resumo:
* Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993). ** Supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (40% – 1993).
Resumo:
The present paper deals with the KAM-theory conditions for systems describing the motion of a particle in central field.
Resumo:
* This investigation was supported by the Bulgarian Ministry of Science and Education under Grant MM-7.
Resumo:
In this paper we present a spectral criterion for existence of mean-periodic solutions of retarded functional differential equations with a time-independent main part.
Resumo:
The method (algorithm BIDIMS) of multivariate objects display to bidimensional structure in which the sum of differences of objects properties and their nearest neighbors is minimal is being described. The basic regularities on the set of objects at this ordering become evident. Besides, such structures (tables) have high inductive opportunities: many latent properties of objects may be predicted on their coordinates in this table. Opportunities of a method are illustrated on an example of bidimentional ordering of chemical elements. The table received in result practically coincides with the periodic Mendeleev table.
Resumo:
2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63
Resumo:
The result of the distributed computing projectWieferich@Home is presented: the binary periodic numbers of bit pseudo-length j ≤ 3500 obtained by replication of a bit string of bit pseudo-length k ≤ 24 and increased by one are Wieferich primes only for the cases of 1092 or 3510.
Resumo:
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37
Resumo:
2000 Mathematics Subject Classification: 60J80.
Resumo:
2000 Mathematics Subject Classification: 35P20, 35J10, 35Q40.