26 resultados para VARIATIONAL PROLAPSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove some multiplicity results concerning quasilinear elliptic equations with natural growth conditions. Techniques of nonsmooth critical point theory are employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an example of methodological approach to the development of variational thinking skills in teaching programming. Various ways in solving a given task are implemented for the purpose. One of the forms, through which the variational thinking is manifested, is related to trail practical actions. In the process of comprehension of the properties thus acquired, students are doing their own (correct or incorrect) conclusions for other, hidden properties and at the same time they discover possibilities for new ways of action and acquiring of new effects. The variability and the generalizing function of thinking are in a close interrelation, and their interaction to a great extend determines the dynamics of the cognitive activity of the student.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 47H04, 65K10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 49J40, 49J35, 58E30, 47H05

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using monotone bifunctions, we introduce a recession concept for general equilibrium problems relying on a variational convergence notion. The interesting purpose is to extend some results of P. L. Lions on variational problems. In the process we generalize some results by H. Brezis and H. Attouch relative to the convergence of the resolvents associated with maximal monotone operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first motivation for this note is to obtain a general version of the following result: let E be a Banach space and f : E → R be a differentiable function, bounded below and satisfying the Palais-Smale condition; then, f is coercive, i.e., f(x) goes to infinity as ||x|| goes to infinity. In recent years, many variants and extensions of this result appeared, see [3], [5], [6], [9], [14], [18], [19] and the references therein. A general result of this type was given in [3, Theorem 5.1] for a lower semicontinuous function defined on a Banach space, through an approach based on an abstract notion of subdifferential operator, and taking into account the “smoothness” of the Banach space. Here, we give (Theorem 1) an extension in a metric setting, based on the notion of slope from [11] and coercivity is considered in a generalized sense, inspired by [9]; our result allows to recover, for example, the coercivity result of [19], where a weakened version of the Palais-Smale condition is used. Our main tool (Proposition 1) is a consequence of Ekeland’s variational principle extending [12, Corollary 3.4], and deals with a function f which is, in some sense, the “uniform” Γ-limit of a sequence of functions.