69 resultados para Meyer–Konig and Zeller Operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P. E. Parvanov - The uniform weighted approximation errors of the Goodman–Sharma operators are characterized for functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33E12, 33C20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C60, 44A20

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, Secondary 60G12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this paper is to obtain fixed point theorems for Kannan and Zamfirescu operators in the presence of cyclical contractive condition. A method for approximation of the fixed points is also provided, for which both a priori and a posteriori error estimates are given. Our results generalize, unify and extend several important fixed points theorems in literature. In order to illustrate the efficiency of our generalizations five significant examples are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the continuity of pseudo-differential operators on Bessel potential spaces Hs|p (Rn ), and on the corresponding Besov spaces B^(s,q)p (R ^n). The modulus of continuity ω we use is assumed to satisfy j≥0, ∑ [ω(2−j )Ω(2j )]2 < ∞ where Ω is a suitable positive function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a polish space M and a Banach space E let B1 (M, E) be the space of first Baire class functions from M to E, endowed with the pointwise weak topology. We study the compact subsets of B1 (M, E) and show that the fundamental results proved by Rosenthal, Bourgain, Fremlin, Talagrand and Godefroy, in case E = R, also hold true in the general case. For instance: a subset of B1 (M, E) is compact iff it is sequentially (resp. countably) compact, the convex hull of a compact bounded subset of B1 (M, E) is relatively compact, etc. We also show that our class includes Gulko compact. In the second part of the paper we examine under which conditions a bounded linear operator T : X ∗ → Y so that T |BX ∗ : (BX ∗ , w∗ ) → Y is a Baire-1 function, is a pointwise limit of a sequence (Tn ) of operators with T |BX ∗ : (BX ∗ , w∗ ) → (Y, · ) continuous for all n ∈ N. Our results in this case are connected with classical results of Choquet, Odell and Rosenthal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* Partially supported by Grant MM-428/94 of MESC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new, unified presentation of the ideal norms of factorization of operators through Banach lattices and related ideal norms is given.