14 resultados para zero divisione
em Aston University Research Archive
Resumo:
This report outlines the derivation and application of a non-zero mean, polynomial-exponential covariance function based Gaussian process which forms the prior wind field model used in 'autonomous' disambiguation. It is principally used since the non-zero mean permits the computation of realistic local wind vector prior probabilities which are required when applying the scaled-likelihood trick, as the marginals of the full wind field prior. As the full prior is multi-variate normal, these marginals are very simple to compute.
Resumo:
The replica method, developed in statistical physics, is employed in conjunction with Gallager's methodology to accurately evaluate zero error noise thresholds for Gallager code ensembles. Our approach generally provides more optimistic evaluations than those reported in the information theory literature for sparse matrices; the difference vanishes as the parity check matrix becomes dense.
Resumo:
This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding.
Resumo:
We consider return-to-zero (RZ) pulses with random phase modulation propagating in a nonlinear channel (modelled by the integrable nonlinear Schrödinger equation, NLSE). We suggest two different models for the phase fluctuations of the optical field: (i) Gaussian short-correlated fluctuations and (ii) generalized telegraph process. Using the rectangular-shaped pulse form we demonstrate that the presence of phase fluctuations of both types strongly influences the number of solitons generated in the channel. It is also shown that increasing the correlation time for the random phase fluctuations affects the coherent content of a pulse in a non-trivial way. The result obtained has potential consequences for all-optical processing and design of optical decision elements.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
The transmission of weak signals through the visual system is limited by internal noise. Its level can be estimated by adding external noise, which increases the variance within the detecting mechanism, causing masking. But experiments with white noise fail to meet three predictions: (a) noise has too small an influence on the slope of the psychometric function, (b) masking occurs even when the noise sample is identical in each two-alternative forced-choice (2AFC) interval, and (c) double-pass consistency is too low. We show that much of the energy of 2D white noise masks extends well beyond the pass-band of plausible detecting mechanisms and that this suppresses signal activity. These problems are avoided by restricting the external noise energy to the target mechanisms by introducing a pedestal with a mean contrast of 0% and independent contrast jitter in each 2AFC interval (termed zero-dimensional [0D] noise). We compared the jitter condition to masking from 2D white noise in double-pass masking and (novel) contrast matching experiments. Zero-dimensional noise produced the strongest masking, greatest double-pass consistency, and no suppression of perceived contrast, consistent with a noisy ideal observer. Deviations from this behavior for 2D white noise were explained by cross-channel suppression with no need to appeal to induced internal noise or uncertainty. We conclude that (a) results from previous experiments using white pixel noise should be re-evaluated and (b) 0D noise provides a cleaner method for investigating internal variability than pixel noise. Ironically then, the best external noise stimulus does not look noisy.
Resumo:
A method of all-optical passive quasi-regeneration in transoceanic 40 Gbit/s return-to-zero transmission systems with strong dispersion management was described. The use of in-line nonlinear optical loop mirrors (NOLM) by the method was demonstrated. The quasi-regeneration of signals performed by NOLMs was found to improve the systems's performance.
Resumo:
The authors study experimentally ~10 ps return-to-zero pulse propagation near the net dispersion zero of an optical fibre transmission line. Stable near-jitter-free propagation was observed over 70 Mm. Pulse stabilisation and ASE suppression were achieved through the saturable aborber mechanism of nonlinear polarisation rotation.
Resumo:
This paper compares the experience of forecasting the UK government bond yield curve before and after the dramatic lowering of short-term interest rates from October 2008. Out-of-sample forecasts for 1, 6 and 12 months are generated from each of a dynamic Nelson-Siegel model, autoregressive models for both yields and the principal components extracted from those yields, a slope regression and a random walk model. At short forecasting horizons, there is little difference in the performance of the models both prior to and after 2008. However, for medium- to longer-term horizons, the slope regression provided the best forecasts prior to 2008, while the recent experience of near-zero short interest rates coincides with a period of forecasting superiority for the autoregressive and dynamic Nelson-Siegel models. © 2014 John Wiley & Sons, Ltd.
Resumo:
We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.
Resumo:
Baker and Meese (2012) (B&M) provided an empirically driven criticism of the use of two-dimensional (2D) pixel noise in equivalent noise (EN) experiments. Their main objection was that in addition to injecting variability into the contrast detecting mechanisms, 2D noise also invokes gain control processes from a widely tuned contrast gain pool (e.g., Foley, 1994). B&M also developed a zero-dimensional (0D) noise paradigm in which all of the variance is concentrated in the mechanisms involved in the detection process. They showed that this form of noise conformed much more closely to expectations than did a 2D variant.
Resumo:
The authors present the impact of asymmetric filtering of strong (e.g. 35 GHz) optical filters on the performance of 42.7 Gb/s 67% (carrier suppressed return to zero)-differential phase shift keying systems. The performance is examined (in an amplified spontaneous emission (ASE) noise-limited regime and in the presence of chromatic dispersion) when offsetting the filter at the receiver by substantial amounts via balanced, constructive and destructive single-ended detections. It is found that with a slight offset (vestigial side band) or an offset of almost half of the modulation frequency (single-side band), there is a significant improvement in the calculated 'Q'. © The Institution of Engineering and Technology 2013.
Resumo:
A novel multichannel carrier-suppressed return-to-zero (CSRZ) to non-return-to-zero (NRZ) format conversion scheme based on a single custom-designed fiber Bragg grating (FBG) with comb spectra is proposed. The spectral response of each channel is designed according to the algebraic difference between the CSRZ and NRZ spectra outlines. The tailored group delays are introduced to minimize the maximum refractive index modulation. Numerical results show that four-channel 200-GHz-spaced CSRZ signals at 40 Gbits/s can be converted into NRZ signals with high Q-factor and wide-range robustness. It is shown that our proposed FBG is robust to deviations of bandwidth and central wavelength detuning. Another important merit of this scheme is that the pattern effects are efficiently reduced owing to the well-designed spectra response.