5 resultados para zeolite A
em Aston University Research Archive
Resumo:
Experimental and theoretical methods have been used to study zeolite structures, properties and applications as membranes for separation purposes. Thin layers of silicalite-1 and Na-LTA zeolites have been synthesised onto carbon-graphite supports using a hydrothermal synthesis procedure. The separation behaviour of the composite membranes was characterized by gas permeation studies of pure, binary and ternary mixtures of methane, ethane and propane. The influence of temperature and feed gas mixture composition on the separation and selectivity performance of the membranes was also investigated. It was found that the silicalite-1 composite membranes synthesised onto the 4 hour oxidized carbon-graphite supports showed the most promising separation behaviour of all the composite membranes investigated. Molecular simulation methods were used to gain an understanding of how hydrocarbon molecules behave both within the pores and on the surfaces of silicalite-1, mordenite and LTA zeolites. Molecular dynamic simulations were used to investigate the influence of temperature and molecular loadings on the diffusional behaviour of hydrocarbons in zeolites. Both hydroxylated (surface termination with hydroxyl groups) and non-hydroxylated silicalite-1 and Na-mordenite surfaces were generated. For both zeolites the most stable surfaces correspond to the {010} surface. For the silicalite-1 {010} surface the adsorption of hydrocarbons and molecular water onto the hydroxylated surface showed a favourable exothermic adsorption process compared to adsorption on the non-hydroxylated surface. With the Na-mordenite {010} surface the adsorption of hydrocarbons onto both the hydroxylated and non-hydroxylated surfaces had a combination of favourable and non-favourable adsorption energies, while the adsorption of molecular water onto both types of surface was found to be a favourable adsorption process.
Resumo:
The aim of this paper is to describe the current state of atomistic simulation of zeolite surfaces by describing what has been achieved and to show how the surface structures are modelled. This is illustrated by using atomistic simulation techniques to model the {100} surface of zeolite LTA. The pure siliceous and aluminated CaNa-A and Na-A with Si/Al = 1 structures were considered. The surface showed three stable terminations but the relative stability varied with composition. The resulting surface structures and geometries show extensive framework distortions, especially in the aluminated forms where the cations formed strong interaction with the zeolite framework thereby increasing their adsorption energies and stabilising their cation position. © 2001 Published by Elsevier Science Ltd.
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.
Resumo:
A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al
Resumo:
A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.