2 resultados para xenobiotic
em Aston University Research Archive
Resumo:
α-Lipoic acid, dihydrolipoic acid (DHLA), N-acetyl cysteine and ascorbate were compared with methylene blue for their ability to attenuate and/or reduce methaemoglobin formation induced by sodium nitrite, 4-aminophenol and dapsone hydroxylamine in human erythrocytes. Neither α-lipoic acid, DHLA, N-acetyl cysteine nor ascorbate had any significant effects on methaemoglobin formed by nitrite, either from pre-treatment, simultaneous addition or post 30 min addition of the agents up to the 60 min time point, although N-acetyl cysteine did reduce methaemoglobin formation at 120 min (P<0.05). In all three treatment groups at 30, 60 and 120 min, there were no significant effects mediated by DHLA or N-acetyl cysteine on 4-aminophenol (1 mM)-mediated haemoglobin oxidation. Ascorbate caused marked significant reductions in 4-aminophenol methaemoglobin in all treatment groups at 30-120 min except at 30 min in the simultaneous addition group (P<0.0001). Neither α-lipoic acid, nor N-acetyl cysteine showed any effects on hydroxylamine-mediated methaemoglobin formation at 30 and 60 in all treatment groups. In contrast, DHLA significantly reduced hydroxylamine-mediated methaemoglobin formation at all three time points after pre-incubation and simultaneous addition (P<0.001), while ascorbate was ineffective. Compared with methylene blue, which was effective in reducing methaemoglobin formation by all three toxins (P<0.01), ascorbate was only highly effective against 4-aminophenol mediated methaemoglobin, whilst the DHLA-mediated attenuation of dapsone hydroxylamine-mediated methaemoglobin formation indicates a possible clinical application in high-dose dapsone therapy. © 2003 Elsevier B.V. All rights reserved.
Resumo:
One of the objectives of the molecular biological study of glaucoma is to establish how the disease develops as a result of the production of aberrant gene products. Many of the genes associated with glaucoma code for proteins which are likely to be directly or indirectly involved in the development and/or function of cells within the trabecular meshwork. The identification of specific defects in these genes is likely to lead to a better understanding of the mechanisms involved in PCG and glaucoma in general and to the development of alternative therapies to surgery. The CYP1B1 gene in particular, which is a linked to congenital glaucoma, and is expressed in the trabecular meshwork, codes for a member of the cytochrome P450 group of proteins. These iron binding proteins constitute a family of enzymes involved in the processes of xenobiotic metabolism, growth, and development. The discovery of the CYP1B1 gene in PCG emphases the importance of abnormalities in the molecular structure of proteins expressed in cells of the trabecular network as a cause of PCG. The identification of specific genetic defects leads to the possibility of more widespread screening for PCG especially in affected families and hence, the possibility of the identification of asymptomatic carriers of the disease. Early identification of 'at risk' parents may then enable earlier detection of PCG and intervention in the infant.