6 resultados para work ontology
em Aston University Research Archive
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.
Resumo:
In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.
Resumo:
This work investigates the process of selecting, extracting and reorganizing content from Semantic Web information sources, to produce an ontology meeting the specifications of a particular domain and/or task. The process is combined with traditional text-based ontology learning methods to achieve tolerance to knowledge incompleteness. The paper describes the approach and presents experiments in which an ontology was built for a diet evaluation task. Although the example presented concerns the specific case of building a nutritional ontology, the methods employed are domain independent and transferrable to other use cases. © 2011 ACM.
Resumo:
Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.