58 resultados para wireless networks
em Aston University Research Archive
Resumo:
Culture defines collective behavior and interactions among people in groups. In organizations, it shapes group identity, work pattern, communication schemes, and interpersonal relations. Any change in organizational culture will lead to changes in these elements of organizational factors, and vice versa. From a managerial standpoint, how to cultivate an organizational culture that would enhance these aforementioned elements in organizational workplace should thus be taken into serious consideration. Based on cases studies in two hospitals, this paper investigates how organizational culture is shaped by a particular type of information and communication technology, wireless networks, a topic that is generally overlooked by the mainstream research community, and in turn implicates how such cultural changes in organizations renovate their competitiveness in the marketplace. Lessons learned from these cases provide valuable insights to emerging IT management and culture studies in general and in wireless network management in the healthcare sector in particular.
Resumo:
The advent of the Integrated Services Digital Network (ISDN) led to the standardisation of the first video codecs for interpersonal video communications, followed closely by the development of standards for the compression, storage and distribution of digital video in the PC environment, mainly targeted at CD-ROM storage. At the same time the second-generation digital wireless networks, and the third-generation networks being developed, have enough bandwidth to support digital video services. The radio propagation medium is a difficult environment in which to deploy low bit error rate, real time services such as video. The video coding standards designed for ISDN and storage applications, were targeted at low bit error rate levels, orders of magnitude lower than the typical bit error rates experienced on wireless networks. This thesis is concerned with the transmission of digital, compressed video over wireless networks. It investigates the behaviour of motion compensated, hybrid interframe DPCM/DCT video coding algorithms, which form the basis of current coding algorithms, in the presence of high bit error rates commonly found on digital wireless networks. A group of video codecs, based on the ITU-T H.261 standard, are developed which are robust to the burst errors experienced on radio channels. The radio link is simulated at low level, to generate typical error files that closely model real world situations, in a Rayleigh fading environment perturbed by co-channel interference, and on frequency selective channels which introduce inter symbol interference. Typical anti-multipath techniques, such as antenna diversity, are deployed to mitigate the effects of the channel. Link layer error control techniques are also investigated.
Resumo:
To exploit the popularity of TCP as still the dominant sender and protocol of choice for transporting data reliably across the heterogeneous Internet, this thesis explores end-to-end performance issues and behaviours of TCP senders when transferring data to wireless end-users. The theme throughout is on end-users located specifically within 802.11 WLANs at the edges of the Internet, a largely untapped area of work. To exploit the interests of researchers wanting to study the performance of TCP accurately over heterogeneous conditions, this thesis proposes a flexible wired-to-wireless experimental testbed that better reflects conditions in the real-world. To exploit the transparent functionalities between TCP in the wired domain and the IEEE 802.11 WLAN protocols, this thesis proposes a more accurate methodology for gauging the transmission and error characteristics of real-world 802.11 WLANs. It also aims to correlate any findings with the functionality of fixed TCP senders. To exploit the popularity of Linux as a popular operating system for many of the Internet’s data servers, this thesis studies and evaluates various sender-side TCP congestion control implementations within the recent Linux v2.6. A selection of the implementations are put under systematic testing using real-world wired-to-wireless conditions in order to screen and present a viable candidate/s for further development and usage in the modern-day heterogeneous Internet. Overall, this thesis comprises a set of systematic evaluations of TCP senders over 802.11 WLANs, incorporating measurements in the form of simulations, emulations, and through the use of a real-world-like experimental testbed. The goal of the work is to ensure that all aspects concerned are comprehensively investigated in order to establish rules that can help to decide under which circumstances the deployment of TCP is optimal i.e. a set of paradigms for advancing the state-of-the-art in data transport across the Internet.
Resumo:
Existing wireless systems are normally regulated by a fixed spectrum assignment strategy. This policy leads to an undesirable situation that some systems may only use the allocated spectrum to a limited extent while others have very serious spectrum insufficiency situation. Dynamic Spectrum Access (DSA) is emerging as a promising technology to address this issue such that the unused licensed spectrum can be opportunistically accessed by the unlicensed users. To enable DSA, the unlicensed user shall have the capability of detecting the unoccupied spectrum, controlling its spectrum access in an adaptive manner, and coexisting with other unlicensed users automatically. In this article, we propose a radio system Transmission Opportunity-based spectrum access control protocol with the aim to improve spectrum access fairness and ensure safe coexistence of multiple heterogeneous unlicensed radio systems. In the scheme, multiple radio systems will coexist and dynamically use available free spectrum without interfering with licensed users. Simulation is carried out to evaluate the performance of the proposed scheme with respect to spectrum utilisation, fairness and scalability. Comparing with the existed studies, our strategy is able to achieve higher scalability and controllability without degrading spectrum utilisation and fairness performance.
Resumo:
A dynamic bandwidth reservation (DBR) scheme for hybrid IEEE 802.16 wireless networks is investigated, in which 802.16 networks serve as the backhaul for client networks, such as WiFi hotspots and cellular networks. The DBR scheme implemented in the subscription stations (SSs) (co-locating with access pointers) consists of two components: connection admission controller (CAC), and bandwidth controller (BC). The CAC processes the received connection set-up requests from the client networks connected to the SSs. The BC manages the request and release of bandwidth from the base station (BS). It dynamically changes the reserved bandwidth between a small number of values. Hysteresis is incorporated in bandwidth release to reduce bandwidth request signalling load and connection blocking probability. An analytical model is proposed to evaluate the performances of reserved bandwidth, connection blocking probability and signalling load. The impacts of hysteresis mechanism and probability of reservation request blocking are taken into account. Simulation verifies the analytical model. ©2008 IEEE.
Resumo:
Since wireless network optimisations can be typically designed and evaluated independently of one another under the assumption that they can be applied jointly or independently. In this paper, we have analysis some rate algorithms in wireless networks. Since wireless networks have different standards in IEEE with peculiar features, data rate is one of those important parameters that wireless networks depend on for performances. The optimisation of this network is dependent on the behaviour of a particular rate algorithm in a network scenario. We have considered some first and second generation's rate algorithm, and it is all about selecting an appropriate data rate that any available wireless network can utilise for transmission in order to achieve a good performance. We have designed and analysis a wireless network and results obtained for some rate algorithms, like ONOE and AARF.
Resumo:
The existing body of knowledge has generally supported that organizational culture plays a significant role in shaping group identity, work pattern, communication schemes, and interpersonal relations; all of these cultural elements are important organizational factors that shape workplaces and operational routines. In the context of emerging information technology, it has also been suggested that organizational culture could affect IT implementation and management. However, little is known about how emerging information technology shapes organizational culture, which in turn helps reshape the organization as a whole. The purpose of this paper is thus to build empirical understanding of how IT in general and emerging wireless networks in particular reshapes organizational culture. Case studies conducted in two hospitals situated in southwest U.S.A. illustrated that the implementation of wireless networks indeed helped shape and/or reshape organizational culture in the healthcare sector and in turn enhance healthcare organizations’ competitiveness in the marketplace. For IT managers and practitioners in healthcare institutions, effective strategy to plan and manage emerging ITs such as wireless networks will thus have long-term implications on cultivating organizational culture that could eventually reshape workplace and competitiveness.
Resumo:
This paper analyzes a case study of wireless network implementation in a politically sensitive environment and seeks to gain practical insights for IT managers in today’s networked economy. The case evolved around an urgent decision to implement wireless networks that were a radical replacement for the existing wired network infrastructure. Although the wireless network infrastructure was well calculated as being considerably cost-efficient, inexperienced administrators and IT department failed to consult various involved stakeholders. Consequently, unintended results of wireless network implementation entangled with the cost efficiency of technology outcome and in turn undermined the objectives and achievement of the initial project plan. Drawing from social perspectives, this case study challenges traditionally dominant perspectives of technology efficiency and summarizes several lessons that could help IT managers and policy makers to better strategize ICT in general, and wireless networks in particular.
Resumo:
Medium access control (MAC) protocols have a large impact on the achievable system performance for wireless ad hoc networks. Because of the limitations of existing analytical models for ad hoc networks, many researchers have opted to study the impact of MAC protocols via discreteevent simulations. However, as the network scenarios, traffic patterns and physical layer techniques may change significantly, simulation alone is not efficient to get insights into the impacts of MAC protocols on system performance. In this paper, we analyze the performance of IEEE 802.11 distributed coordination function (DCF) in multihop network scenario. We are particularly interested in understanding how physical layer techniques may affect the MAC protocol performance. For this purpose, the features of interference range is studied and taken into account of the analytical model. Simulations with OPNET show the effectiveness of the proposed analytical approach. Copyright 2005 ACM.
Resumo:
The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.
Resumo:
The performance of wireless networks is limited by multiple access interference (MAI) in the traditional communication approach where the interfered signals of the concurrent transmissions are treated as noise. In this paper, we treat the interfered signals from a new perspective on the basis of additive electromagnetic (EM) waves and propose a network coding based interference cancelation (NCIC) scheme. In the proposed scheme, adjacent nodes can transmit simultaneously with careful scheduling; therefore, network performance will not be limited by the MAI. Additionally we design a space segmentation method for general wireless ad hoc networks, which organizes network into clusters with regular shapes (e.g., square and hexagon) to reduce the number of relay nodes. The segmentation methodworks with the scheduling scheme and can help achieve better scalability and reduced complexity. We derive accurate analytic models for the probability of connectivity between two adjacent cluster heads which is important for successful information relay. We proved that with the proposed NCIC scheme, the transmission efficiency can be improved by at least 50% for general wireless networks as compared to the traditional interference avoidance schemes. Numeric results also show the space segmentation is feasible and effective. Finally we propose and discuss a method to implement the NCIC scheme in a practical orthogonal frequency division multiplexing (OFDM) communications networks. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Wireless Mesh Networks (WMNs) have emerged as a key technology for the next generation of wireless networking. Instead of being another type of ad-hoc networking, WMNs diversify the capabilities of ad-hoc networks. Several protocols that work over WMNs include IEEE 802.11a/b/g, 802.15, 802.16 and LTE-Advanced. To bring about a high throughput under varying conditions, these protocols have to adapt their transmission rate. In this paper, we have proposed a scheme to improve channel conditions by performing rate adaptation along with multiple packet transmission using packet loss and physical layer condition. Dynamic monitoring, multiple packet transmission and adaptation to changes in channel quality by adjusting the packet transmission rates according to certain optimization criteria provided greater throughput. The key feature of the proposed method is the combination of the following two factors: 1) detection of intrinsic channel conditions by measuring the fluctuation of noise to signal ratio via the standard deviation, and 2) the detection of packet loss induced through congestion. We have shown that the use of such techniques in a WMN can significantly improve performance in terms of the packet sending rate. The effectiveness of the proposed method was demonstrated in a simulated wireless network testbed via packet-level simulation.
Resumo:
As wireless network technologies evolve towards an All-IP framework, Next Generation Wireless Communication Devices demand better use of spectral resources by employing advanced techniques of silence suppression. This paper presents an analysis of VoIP call data and compares the statistical results based on observed patterns of talk spurts and silence lengths to those achieved by a modified on-off voice model for silence suppression in wireless networks. As talk spurts and silence lengths are sensitive to varying word lengths, temporal structure and other prosodic aspects of speech, the impact of the use of various languages, dialects and gender of speakers on these results is also assessed.