7 resultados para wet peroxide oxidation

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the me0chanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion exchange resins are used for many purposes in various areas of science and commerce. One example is the use of cation exchange resins in the nuclear industry for the clean up of radioactively contaminated water (for example the removal of 137Cs). However, during removal of radionuclides, the resin itself becomes radioactively contaminated, and must be treated as Intermediate Level Waste. This radioactive contamination of the resin creates a disposal problem. Conventionally, there are two main avenues of disposal for industrial wastes, landfill burial or incineration. However, these are regarded as inappropriate for the disposal of the cation exchange resin involved in this project. Thus, a method involving the use of Fenton's Reagent (Hydrogen Peroxide/soluble Iron catalyst) to destroy the resin by wet oxidation has been developed. This process converts 95% of the solid resin to gaseous CO2, thus greatly reducing the volume of radioactive waste that has to be disposed of. However, hydrogen peroxide is an expensive reagent, and is a major component of the cost of any potential plant for the destruction of ion exchange resin. The aim of my project has been to discover a way of improving the efficiency of the destruction of the resin thus reducing the cost involved in the use of hydrogen peroxide. The work on this problem has been concentrated in two main areas:-1) Use of analytical techniques such as NMR and IR to follow the process of the hydrogen peroxide destruction of both resin beads and model systems such as water soluble calixarenes. 2) Use of various physical and chemical techniques in an attempt to improve the overall efficiency of hydrogen peroxide utilization. Examples of these techniques include UV irradiation, both with and without a photocatalyst, oxygen carrying molecules and various stirring regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of sulfated alumina catalysts were synthesised by wet impregnation with sulfate-containing solutions. The degree of surface sulfation and corresponding surface acidity could be readily tuned by varying the molarity of impregnating solution. Strong acid treatments (>0.1 M) induced aluminium-sulfate crystallisation with a concomitant decrease in porosity and surface acidity. Platinum-doped sulfated aluminas showed enhanced activity towards methane, ethane and propane combustion. Activity scaled with the degree of accessible surface sulfate and platinum loading, however C-H bond scission appeared rate-limiting over both pure and presulfated aluminas. The magnitude of sulfate-promoted propane oxidation was greatest under heavily oxidising conditions (C3H6∶O2 > 1:20) but independent of Pt loading, confirming that support-mediated alkane activation is the dominant factor in the promotional mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin alumina monolayers grafted onto an ordered mesoporous SBA-15 silica framework afford a composite catalyst support with unique structural properties and surface chemistry. Palladium nanoparticles deposited onto Al-SBA-15 via wet impregnation exhibit the high dispersion and surface oxidation characteristic of pure aluminas, in conjunction with the high active site densities characteristic of thermally stable, high-area mesoporous silicas. This combination confers significant rate enhancements in the aerobic selective oxidation (selox) of cinnamyl alcohol over Pd/Al-SBA-15 compared to mesoporous alumina or silica supports. Operando, liquid-phase XAS highlights the interplay between dissolved oxygen and the oxidation state of palladium nanoparticles dispersed over Al-SBA-15 towards on-stream reduction: ambient pressures of flowing oxygen are sufficient to hinder palladium oxide reduction to metal, enabling a high selox activity to be maintained, whereas rapid PdO reduction and concomitant catalyst deactivation occurs under static oxygen. Selectivity to the desired cinnamaldehyde product mirrors these trends in activity, with flowing oxygen minimising CO cleavage of the cinnamyl alcohol reactant to trans-β-methylstyrene, and of cinnamaldehyde decarbonylation to styrene. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X -band electron paramagnetic resonance spectroscopy. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.