17 resultados para web-enabled collective intelligence

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The paper aims to explore the nature and purpose of higher education (HE) in the twenty-first century, focussing on how it can help fashion a green knowledge-based economy by developing approaches to learning and teaching that are social, networked and ecologically sensitive. Design/methodology/approach: The paper presents a discursive analysis of the skills and knowledge requirements of an emerging green knowledge-based economy using a range of policy focussed and academic research literature. Findings: The business opportunities that are emerging as a more sustainable world is developed requires the knowledge and skills that can capture and move then forward but in a complex and uncertain worlds learning needs to non-linear, creative and emergent. Practical implications: Sustainable learning and the attributes graduates will need to exhibit are prefigured in the activities and learning characterising the work and play facilitated by new media technologies. Social implications: Greater emphasis is required in higher learning understood as the capability to learn, adapt and direct sustainable change requires interprofessional co-operation that must utlise the potential of new media technologies to enhance social learning and collective intelligence. Originality/value: The practical relationship between low-carbon economic development, social sustainability and HE learning is based on both normative criteria and actual and emerging projections in economic, technological and skills needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six actions for collation collective intelligence to inform and accelerate change

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of self adaptive systems can be emergent, which means that the system’s behaviour may be seen as unexpected by its customers and its developers. Therefore, a self-adaptive system needs to garner confidence in its customers and it also needs to resolve any surprise on the part of the developer during testing and maintenance. We believe that these two functions can only be achieved if a self-adaptive system is also capable of self-explanation. We argue a self-adaptive system’s behaviour needs to be explained in terms of satisfaction of its requirements. Since self-adaptive system requirements may themselves be emergent, we propose the use of goal-based requirements models at runtime to offer self-explanation of how a system is meeting its requirements. We demonstrate the analysis of run-time requirements models to yield a self-explanation codified in a domain specific language, and discuss possible future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protein's isoelectric point or pI corresponds to the solution pH at which its net surface charge is zero. Since the early days of solution biochemistry, the pI has been recorded and reported, and thus literature reports of pI abound. The Protein Isoelectric Point database (PIP-DB) has collected and collated these data to provide an increasingly comprehensive database for comparison and benchmarking purposes. A web application has been developed to warehouse this database and provide public access to this unique resource. PIP-DB is a web-enabled SQL database with an HTML GUI front-end. PIP-DB is fully searchable across a range of properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world is in a period of reflection about social and economic models. In particular there is a review of the capacities that countries have for improving their competitiveness. The experiences in a society are part of the process of learning and knowledge development in that society: especially in the development of communities. Risks appear continually in the process of the search for, analysis and implementation of solutions to problems. This paper discusses the issues related to the improvement of productivity and knowledge in a society, the risk that poor or even declining productivity brings to the communities and the need to develop people that support the decision making process in communities.The approach to improve the communities' development is through the design of a research programme in knowledge management based on distance learning. The research programme implementation is designed to provide value added to the decisions in communities in order to use collective intelligence, solve collective problems and to achieve goals that support local solutions. This program is organized and focused on four intelligence areas, artificial, collective, sentient and strategic. These areas are productivity related and seek to reduce the risk of lack of competitiveness through formal and integrated problem analysis. In a country such as Colombia, where different regions face varying problems to solve and there is a low level of infrastructure, the factors of production such as knowledge, skilled labour and "soft" infrastructure can be a way to develop the society.This entails using the local physical resources adequately for creating value with the support of people in the region to lead the analysis and search for solutions in the communities. The paper will describe the framework and programme and suggest how it could be applied in Colombia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

UncertWeb is a European research project running from 2010-2013 that will realize the uncertainty enabled model web. The assumption is that data services, in order to be useful, need to provide information about the accuracy or uncertainty of the data in a machine-readable form. Models taking these data as imput should understand this and propagate errors through model computations, and quantify and communicate errors or uncertainties generated by the model approximations. The project will develop technology to realize this and provide demonstration case studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite expectations being high, the industrial take-up of Semantic Web technologies in developing services and applications has been slower than expected. One of the main reasons is that many legacy systems have been developed without considering the potential of theWeb in integrating services and sharing resources.Without a systematic methodology and proper tool support, the migration from legacy systems to SemanticWeb Service-based systems can be a tedious and expensive process, which carries a significant risk of failure. There is an urgent need to provide strategies, allowing the migration of legacy systems to Semantic Web Services platforms, and also tools to support such strategies. In this paper we propose a methodology and its tool support for transitioning these applications to Semantic Web Services, which allow users to migrate their applications to Semantic Web Services platforms automatically or semi-automatically. The transition of the GATE system is used as a case study. © 2009 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose algorithms for combining and ranking answers from distributed heterogeneous data sources in the context of a multi-ontology Question Answering task. Our proposal includes a merging algorithm that aggregates, combines and filters ontology-based search results and three different ranking algorithms that sort the final answers according to different criteria such as popularity, confidence and semantic interpretation of results. An experimental evaluation on a large scale corpus indicates improvements in the quality of the search results with respect to a scenario where the merging and ranking algorithms were not applied. These collective methods for merging and ranking allow to answer questions that are distributed across ontologies, while at the same time, they can filter irrelevant answers, fuse similar answers together, and elicit the most accurate answer(s) to a question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In current organizations, valuable enterprise knowledge is often buried under rapidly expanding huge amount of unstructured information in the form of web pages, blogs, and other forms of human text communications. We present a novel unsupervised machine learning method called CORDER (COmmunity Relation Discovery by named Entity Recognition) to turn these unstructured data into structured information for knowledge management in these organizations. CORDER exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments in an expert evaluation, a quantitative benchmarking, and an application of CORDER in a social networking tool called BuddyFinder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a description logic extending SROIQ (the description logic underlying OWL 2 DL) and at the same time encompassing some of the most prominent monotonic and nonmonotonic rule languages, in particular Datalog extended with the answer set semantics. Our proposal could be considered a substantial contribution towards fulfilling the quest for a unifying logic for the Semantic Web. As a case in point, two non-monotonic extensions of description logics considered to be of distinct expressiveness until now are covered in our proposal. In contrast to earlier such proposals, our language has the "look and feel" of a description logic and avoids hybrid or first-order syntaxes. © 2012 The Author(s).