7 resultados para volatile phenols

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scavenging of C- and O-centered free radicals is mandatory in processing stabilization of polypropylene. Phenolic antioxidants act principally as O-radical scavengers only. Aromatic amines, N,N'-disubstituted 1,4-phenylenediamines (PD) and 4,4'disubstituted diphenylamines (DPA), scavenge both C- and O-centered radicals and have consequently a broader activity spectrum. PD cannot be used, however, in polypropylene because of formation of strongly discoloring and staining sacrificial transformation products. Such products formed from DPA have even more discoloring properties. A good processing stability and acceptable extent of discoloration can be achieved by blends of phenols with 4,4'-di-tert.octyl DPA. The effect is considered as a beneficial cooperation between the two chain-breaking antioxidants involving interactions with amine-based transformation products.