2 resultados para viscosity measurement
em Aston University Research Archive
Resumo:
An international round robin study of the stability of fast pyrolysis bio-oil was undertaken. Fifteen laboratories in five different countries contributed. Two bio-oil samples were distributed to the laboratories for stability testing and further analysis. The stability test was defined in a method provided with the bio-oil samples. Viscosity measurement was a key input. The change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C was the defining element of stability. Subsequent analyses included ultimate analysis, density, moisture, ash, filterable solids, and TAN/pH determination, and gel permeation chromatography. The results showed that kinematic viscosity measurement was more generally conducted and more reproducibly performed versus dynamic viscosity measurement. The variation in the results of the stability test was great and a number of reasons for the variation were identified. The subsequent analyses proved to be at the level of reproducibility, as found in earlier round robins on bio-oil analysis. Clearly, the analyses were more straightforward and reproducible with a bio-oil sample low in filterable solids (0.2%), compared to one with a higher (2%) solids loading. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace. © 2012 American Chemical Society.
Resumo:
A system for the NDI' testing of the integrity of conposite materials and of adhesive bonds has been developed to meet industrial requirements. The vibration techniques used were found to be applicable to the development of fluid measuring transducers. The vibrational spectra of thin rectangular bars were used for the NDT work. A machined cut in a bar had a significant effect on the spectrum but a genuine crack gave an unambiguous response at high amplitudes. This was the generation of fretting crack noise at frequencies far above that of the drive. A specially designed vibrational decrement meter which, in effect, measures mechanical energy loss enabled a numerical classification of material adhesion to be obtained. This was used to study bars which had been flame or plasma sprayed with a variety of materials. It has become a useful tool in optimising coating methods. A direct industrial application was to classify piston rings of high performance I.C. engines. Each consists of a cast iron ring with a channel into which molybdenum, a good bearing surface, is sprayed. The NDT classification agreed quite well with the destructive test normally used. The techniques and equipment used for the NOT work were applied to the development of the tuning fork transducers investigated by Hassan into commercial density and viscosity devices. Using narrowly spaced, large area tines a thin lamina of fluid is trapped between them. It stores a large fraction of the vibrational energy which, acting as an inertia load reduces the frequency. Magnetostrictive and piezoelectric effects together or in combination enable the fork to be operated through a flange. This allows it to be used in pipeline or 'dipstick' applications. Using a different tine geometry the viscosity loading can be predoninant. This as well as the signal decrement of the density transducer makes a practical viscometer.