4 resultados para virtual topology, decomposition, hex meshing algorithms

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of distributed computer systems with a largely transparent user interface, new questions have arisen regarding the management of such an environment by an operating system. One fertile area of research is that of load balancing, which attempts to improve system performance by redistributing the workload submitted to the system by the users. Early work in this field concentrated on static placement of computational objects to improve performance, given prior knowledge of process behaviour. More recently this has evolved into studying dynamic load balancing with process migration, thus allowing the system to adapt to varying loads. In this thesis, we describe a simulated system which facilitates experimentation with various load balancing algorithms. The system runs under UNIX and provides functions for user processes to communicate through software ports; processes reside on simulated homogeneous processors, connected by a user-specified topology, and a mechanism is included to allow migration of a process from one processor to another. We present the results of a study of adaptive load balancing algorithms, conducted using the aforementioned simulated system, under varying conditions; these results show the relative merits of different approaches to the load balancing problem, and we analyse the trade-offs between them. Following from this study, we present further novel modifications to suggested algorithms, and show their effects on system performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project evaluates the benefits of meshing existing 11kV radial networks in order to reduce losses and maximise the connection of low carbon distributed generation. These networks are often arranged as radial feeders with normally-open links between two of the feeders; the link is closed only to enable continuity of supply to an isolated portion of a feeder following a fault on the network. However, this link could also be closed permanently thus operating the network as a meshed topology under non-faulted conditions. The study will look at loss savings and the addition of distributed generation on a typical network under three different scenarios; traditional radial feeders, fixed meshed network and a dynamic meshed network. The networks are compared in terms of feeder losses, capacity, voltage regulation and fault levels.