10 resultados para vehicular networks

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated short range communications (DSRC) has been regarded as one of the most promising technologies to provide robust communications for large scale vehicle networks. It is designed to support both road safety and commercial applications. Road safety applications will require reliable and timely wireless communications. However, as the medium access control (MAC) layer of DSRC is based on the IEEE 802.11 distributed coordination function (DCF), it is well known that the random channel access based MAC cannot provide guaranteed quality of services (QoS). It is very important to understand the quantitative performance of DSRC, in order to make better decisions on its adoption, control, adaptation, and improvement. In this paper, we propose an analytic model to evaluate the DSRC-based inter-vehicle communication. We investigate the impacts of the channel access parameters associated with the different services including arbitration inter-frame space (AIFS) and contention window (CW). Based on the proposed model, we analyze the successful message delivery ratio and channel service delay for broadcast messages. The proposed analytical model can provide a convenient tool to evaluate the inter-vehicle safety applications and analyze the suitability of DSRC for road safety applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless-communication technology can be used to improve road safety and to provide Internet access inside vehicles. This paper proposes a cross-layer protocol called coordinated external peer communication (CEPEC) for Internet-access services and peer communications for vehicular networks. We assume that IEEE 802.16 base stations (BS) are installed along highways and that the same air interface is equipped in vehicles. Certain vehicles locating outside of the limited coverage of their nearest BSs can still get access to the Internet via a multihop route to their BSs. For Internet-access services, the objective of CEPEC is to increase the end-to-end throughput while providing a fairness guarantee in bandwidth usage among road segments. To achieve this goal, the road is logically partitioned into segments of equal length. A relaying head is selected in each segment that performs both local-packet collecting and aggregated packets relaying. The simulation results have shown that the proposed CEPEC protocol provides higher throughput with guaranteed fairness in multihop data delivery in vehicular networks when compared with the purely IEEE 802.16-based protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A key problem with IEEE 802.11 technology is adaptation of the transmission rates to the changing channel conditions, which is more challenging in vehicular networks. Although rate adaptation problem has been extensively studied for static residential and enterprise network scenarios, there is little work dedicated to the IEEE 802.11 rate adaptation in vehicular networks. Here, the authors are motivated to study the IEEE 802.11 rate adaptation problem in infrastructure-based vehicular networks. First of all, the performances of several existing rate adaptation algorithms under vehicle network scenarios, which have been widely used for static network scenarios, are evaluated. Then, a new rate adaptation algorithm is proposed to improve the network performance. In the new rate adaptation algorithm, the technique of sampling candidate transmission modes is used, and the effective throughput associated with a transmission mode is the metric used to choose among the possible transmission modes. The proposed algorithm is compared to several existing rate adaptation algorithms by simulations, which shows significant performance improvement under various system and channel configurations. An ideal signal-to-noise ratio (SNR)-based rate adaptation algorithm in which accurate channel SNR is assumed to be always available is also implemented for benchmark performance comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the implementation aspects and constraints of the simplest network coding (NC) schemes for a two-way relay channel (TWRC) composed of a user equipment (mobile terminal), an LTE relay station (RS) and an LTE base station (eNB) are considered in order to assess the usefulness of the NC in more realistic scenarios. The information exchange rate gain (IERG), the energy reduction gain (ERG) and the resource utilization gain (RUG) of the NC schemes with and without subcarrier division duplexing (SDD) are obtained by computer simulations. The usefulness of the NC schemes are evaluated for varying traffic load levels, the geographical distances between the nodes, the RS transmit powers, and the maximum numbers of retransmissions. Simulation results show that the NC schemes with and without SDD, have the throughput gains 0.5% and 25%, the ERGs 7 - 12% and 16 - 25%, and the RUGs 0.5 - 3.2%, respectively. It is found that the NC can provide performance gains also for the users at the cell edge. Furthermore, the ERGs of the NC increase with the transmit power of the relay while the ERGs of the NC remain the same even when the maximum number of retransmissions is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently underwater sensor networks (UWSN) attracted large research interests. Medium access control (MAC) is one of the major challenges faced by UWSN due to the large propagation delay and narrow channel bandwidth of acoustic communications used for UWSN. Widely used slotted aloha (S-Aloha) protocol suffers large performance loss in UWSNs, which can only achieve performance close to pure aloha (P-Aloha). In this paper we theoretically model the performances of S-Aloha and P-Aloha protocols and analyze the adverse impact of propagation delay. According to the observation on the performances of S-Aloha protocol we propose two enhanced S-Aloha protocols in order to minimize the adverse impact of propagation delay on S-Aloha protocol. The first enhancement is a synchronized arrival S-Aloha (SA-Aloha) protocol, in which frames are transmitted at carefully calculated time to align the frame arrival time with the start of time slots. Propagation delay is taken into consideration in the calculation of transmit time. As estimation error on propagation delay may exist and can affect network performance, an improved SA-Aloha (denoted by ISA-Aloha) is proposed, which adjusts the slot size according to the range of delay estimation errors. Simulation results show that both SA-Aloha and ISA-Aloha perform remarkably better than S-Aloha and P-Aloha for UWSN, and ISA-Aloha is more robust even when the propagation delay estimation error is large. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy consumption has been a key concern of data gathering in wireless sensor networks. Previous research works show that modulation scaling is an efficient technique to reduce energy consumption. However, such technique will also impact on both packet delivery latency and packet loss, therefore, may result in adverse effects on the qualities of applications. In this paper, we study the problem of modulation scaling and energy-optimization. A mathematical model is proposed to analyze the impact of modulation scaling on the overall energy consumption, end-to-end mean delivery latency and mean packet loss rate. A centralized optimal management mechanism is developed based on the model, which adaptively adjusts the modulation levels to minimize energy consumption while ensuring the QoS for data gathering. Experimental results show that the management mechanism saves significant energy in all the investigated scenarios. Some valuable results are also observed in the experiments. © 2004 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.