5 resultados para vasodilation
em Aston University Research Archive
Resumo:
The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aim of this review is to identify those antioxidants most appropriate for inclusion in an ideal ocular nutritional supplement, suitable for those with a family history of glaucoma, cataract, or age-related macular disease, or lifestyle factors predisposing onset of these conditions, such as smoking, poor nutritional status, or high levels of sunlight exposure. It would also be suitable for those with early stages of age-related ocular disease. Literature searches were carried out on Web of Science and PubMed for articles relating to the use of nutrients in ocular disease. Those highlighted for possible inclusion were vitamins A, B, C and E, carotenoids beta-carotene, lutein, and zeaxanthin, minerals selenium and zinc, and the herb, Ginkgo biloba. Conflicting evidence is presented for vitamins A and E in prevention of ocular disease; these vitamins have roles in the production of rhodopsin and prevention of lipid peroxidation respectively. B vitamins have been linked with a reduced risk of cataract and studies have provided evidence supporting a protective role of vitamin C in cataract prevention. Beta-carotene is active in the prevention of free radical formation, but has been linked with an increased risk of lung cancer in smokers. Improvements in visual function in patients with age-related macular disease have been noted with lutein and zeaxanthin supplementation. Selenium has been linked with a reduced risk of cataract and activates the antioxidant enzyme glutathione peroxidase, protecting cell membranes from oxidative damage while zinc, although an essential component of antioxidant enzymes, has been highlighted for risk of adverse effects. As well as reducing platelet aggregation and increasing vasodilation, Gingko biloba has been linked with improvements in pre-existing field damage in some patients with normal tension glaucoma. We advocate that vitamins C and E, and lutein/zeaxanthin should be included in our theoretically ideal ocular nutritional supplement.
Resumo:
Administration of calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) can cause facial flushing, suggesting that the peptides may be important in hot flushes experienced particularly by post-menopausal women. Five studies have measured plasma CGRP concentrations in post-menopausal women who suffer from flushes; all demonstrated elevations of between 170% and 320% over control. Three of the studies showed a temporal relationship between flushes and CGRP elevation. A further study has shown that CGRP is elevated in the urine of women who suffer from flushes. Only a single study has investigated flushes in pre-menopausal women; no elevation of CGRP was observed. Flushes are also experienced by men undergoing androgen deprivation therapy. Whilst one study failed to find any increase in CGRP in the urine of these individuals, a small study has identified an increase in plasma CGRP. No studies have investigated plasma AM or the related peptide, intermedin/AM2. Overall, there is good evidence to show that flushes in post-menopausal women are accompanied by an increase in CGRP. CGRP could act centrally on the thermoregulatory centre of the hypothalamus as well as peripherally to cause vasodilation and sweating. However, it remains to be demonstrated that the elevated CGRP causes flushes. Recently developed CGRP antagonists provide an opportunity to test this hypothesis. If they are successful, they may represent a useful alternative to oestrogen replacement therapy.
Resumo:
Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.
Resumo:
AMP-activated protein kinase (AMPK) is present in the arterial wall and is activated in response to cellular stressors that raise AMP relative to ADP/ATP. Activation of AMPK in vivo lowers blood pressure but the influence of hyperlipidemia on this response has not been studied. ApoE-/- mice on high fat diet for 6 weeks and age-matched controls were treated with the AMPK activator, AICAR daily for two weeks. Under anesthesia, the carotid artery was cannulated for blood pressure measurements. Aortic tissue was removed for in vitro functional experiments and AMPK activity was measured in artery homogenates by Western blotting. ApoE-/- mice had significantly raised mean arterial pressure; chronic AICAR treatment normalized this but had no effect in normolipidemic mice, whereas acute administration of AICAR lowered mean arterial pressure in both groups. Chronic AICAR treatment increased phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase in normolipidemic but not ApoE-/- mice. In aortic rings, AMPK activation induced vasodilation and an anticontractile effect, which was attenuated in ApoE-/- mice. This study demonstrates that hyperlipidemia dysregulates the AMPK pathway in the arterial wall but this effect can be reversed by AMPK activation, possibly through improving vessel compliance.
Resumo:
Molecular oxygen (O2) is an essential component for survival and development. Variation in O2 levels leads to changes in molecular signaling and ultimately affects the physiological functions of many organisms. Nitric oxide (NO) and hydrogen sulfide (H2S) are two gaseous cellular signaling molecules that play key roles in several physiological functions involved in maintaining vascular homeostasis including vasodilation, anti-inflammation, and vascular growth. Apart from the aforementioned functions, NO and H2S are believed to mediate hypoxic responses and serve as O2 chemosensors in biological systems. In this literature review, we briefly discuss NO and H2S and their roles during hypoxia.