7 resultados para variance inflation factor

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments combining different groups or factors are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than simply the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, in a factorial experiment, it is important to define the design of the experiment in detail because this determines the appropriate type of ANOVA. We will discuss some of the common variations of factorial ANOVA in future statnotes. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the sample size required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for the error term of the ANOVA testing effects of particular interest. Finally, it is important to always consider the design of the experiment because this determines the appropriate ANOVA to use. Hence, it is necessary to be able to identify the different forms of ANOVA appropriate to different experimental designs and to recognise when a design is a split-plot or incorporates a repeated measure. If there is any doubt about which ANOVA to use in a specific circumstance, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-way design has been variously described as a matched-sample F-test, a simple within-subjects ANOVA, a one-way within-groups ANOVA, a simple correlated-groups ANOVA, and a one-factor repeated measures design! This confusion of terminology is likely to lead to problems in correctly identifying this analysis within commercially available software. The essential feature of the design is that each treatment is allocated by randomization to one experimental unit within each group or block. The block may be a plot of land, a single occasion in which the experiment was performed, or a human subject. The ‘blocking’ is designed to remove an aspect of the error variation and increase the ‘power’ of the experiment. If there is no significant source of variation associated with the ‘blocking’ then there is a disadvantage to the two-way design because there is a reduction in the DF of the error term compared with a fully randomised design thus reducing the ‘power’ of the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some experimental situations, the factors may not be equivalent to each other and replicates cannot be assigned at random to all treatment combinations. A common case, called a ‘split-plot design’, arises when one factor can be considered to be a major factor and the other a minor factor. Investigators need to be able to distinguish a split-plot design from a fully randomized design as it is a common mistake for researchers to analyse a split-plot design as if it were a fully randomised factorial experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The key to the correct application of ANOVA is careful experimental design and matching the correct analysis to that design. The following points should therefore, be considered before designing any experiment: 1. In a single factor design, ensure that the factor is identified as a 'fixed' or 'random effect' factor. 2. In more complex designs, with more than one factor, there may be a mixture of fixed and random effect factors present, so ensure that each factor is clearly identified. 3. Where replicates can be grouped or blocked, the advantages of a randomised blocks design should be considered. There should be evidence, however, that blocking can sufficiently reduce the error variation to counter the loss of DF compared with a randomised design. 4. Where different treatments are applied sequentially to a patient, the advantages of a three-way design in which the different orders of the treatments are included as an 'effect' should be considered. 5. Combining different factors to make a more efficient experiment and to measure possible factor interactions should always be considered. 6. The effect of 'internal replication' should be taken into account in a factorial design in deciding the number of replications to be used. Where possible, each error term of the ANOVA should have at least 15 DF. 7. Consider carefully whether a particular factorial design can be considered to be a split-plot or a repeated measures design. If such a design is appropriate, consider how to continue the analysis bearing in mind the problem of using post hoc tests in this situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the intercorrelations and the independent and combined factor structures of the Sixteen Personality Factor Questionnaire Fifth Edition (16PF5) and the Fundamental Interpersonal Orientation-Behaviour Scale (FIRO-B). Four thousand four hundred and fourteen U.S. participants completed these measures as part of executive assessments between 1994 and 2003. Exploratory factor analyses supported the five-factor higher-order structure of the 16PF5; however, the three-component structure for the FIRO-B was not supported. A six-factor structure was found to underlie the variance in the measures in combination. Five of these were close to the 16PF5 higher-order structure, but a sixth factor labelled Social Independence also emerged. This new factor consisted of the 16PF5 primaries of Liveliness and Social Boldness, and the FIRO-B Wanted Control scale.