9 resultados para variable-order fractional derivative
em Aston University Research Archive
Resumo:
The performance of seven minimization algorithms are compared on five neural network problems. These include a variable-step-size algorithm, conjugate gradient, and several methods with explicit analytic or numerical approximations to the Hessian.
Resumo:
We demonstrate the possibility to use a fractional order of poling period of nonlinear crystal waveguides for tunable second harmonic generation. This approach allows one to extend wavelength coverage in the visible spectral range by frequency doubling in a single crystal waveguide.
Resumo:
Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council].
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
We present a diffractive phase variable attenuator for femtosecond laser radiation control. It allows the control of beam power up to 0.75 10 <sup>13</sup> W/cm<sup>2</sup> without introducing serious distortions in spectra and beam shape while it operates in zero order diffraction. The attenuator can operate with wavelengths from DUV to IR. © 2009 Optical Society of America.
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
Cadogan and Lee (this issue) discuss the problems inherent in modeling formative latent variables as endogenous. In response to the commentaries by Rigdon (this issue) and Finn and Wang (this issue), the present article extends the discussion on formative measures. First, the article shows that regardless of whether statistical identification is achieved, researchers are unable to illuminate the nature of a formative latent variable. Second, the study clarifies issues regarding formative indicator weighting, highlighting that the weightings of formative components should be specified as part of the construct definition. Finally, the study shows that higher-order reflective constructs are invalid, highlights the damage their use can inflict on theory development and knowledge accumulation, and provides recommendations on a number of alternative models which should be used in their place (including the formative model). © 2012 Elsevier Inc.
Resumo:
The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.