8 resultados para valves
em Aston University Research Archive
Resumo:
Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.
Resumo:
PCR with broad-range primers for prokaryotic 16S rRNA genes was used to identify bacterial DNA in tissue from patients undergoing valve replacements following a previous episode of infective endocarditis (IF). Of eight valves investigated, bacterial DNA was detected in three from patients for whom IE had been treated by antibiotic therapy 5, 12 and 18 months previously. The demonstration of bacterial DNA within resected heart valves suggests either recurrence of infection, treatment failure or the persistence of bacterial debris within the cardiac vegetation. There may also be implications for routine use of PCR in the diagnosis of infection. © 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases.
Resumo:
Objective. Infective endocarditis (IE) is diagnosed by the Duke criteria, which can be inconclusive particularly when blood cultures are negative. This study investigated the application of polymerase chain reaction (PCR) to identify bacterial DNA in excised valvular tissue, and its role in establishing the diagnosis of IE. Methods. Ninety-eight patients undergoing valve replacement surgery were studied. Twenty-eight patients were confirmed as definite for endocarditis by the Duke criteria; nine were considered as possible and 61 had no known or previous microbial infection of the endocardium. A broad-range PCR technique was used to amplify prokaryotic 16S rRNA genes present within homogenised heart valve tissue. Subsequent DNA sequencing of the PCR amplicon allowed identification of the infecting microorganism. Results. PCR results demonstrated the presence of bacterial DNA in the heart valves obtained from 14 out of 20 (70%) definite IE patients with positive blood cultures preoperatively. The causative microorganism for one patient with definite culture negative endocarditis was identified by PCR. Two out of nine (22%) of the valves from possible endocarditis patients also had bacterial DNA present converting them into the definite criteria whereas in the valves of seven out of nine (78%) of these patients no bacterial DNA was detected. Conclusion. The application of PCR to the explanted valves in patients with possible or confirmed diagnosis can augment the Duke criteria thereby improving post-surgical antimicrobial therapeutic options. © 2003 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coagulase-negative staphylococci are major aetiological agents of prosthetic valve endocarditis and an occasional cause of native valve disease. It is currently unclear how this group of usually avirulent microorganisms produces an infection associated with high rates of morbidity and mortality. The aim of this thesis was to investigate whether there are specific genotypes and/or phenotypes of coagulase-negative staphylococci with a propensity to cause infective endocarditis and to investigate any identified virulence factors as markers of infection. In this study, strains of endocarditis-related coagulase-negative staphylococci were genotyped by determining their macrorestriction genomic profile using pulsed-field gel electrophoresis. The strains were also investigated for phenotypic characteristics that predisposed the microorganisms to infect heart valves. By comparing coagulase-negative staphylococcal strains recovered from endocarditis patients with isolates from other significant infections (prosthetic device-related osteomyelitis and catheter-associated sepsis), no specific genotype or phenotype with a predilection to cause endocarditis was identified. However, the majority of the endocarditis-associated and other infection strains expressed the potential virulence factors lipase and esterase. Another approach to the investigation of virulence determinants used patient's serum to screen a Staphylococcus epidermidis NCTC 11047 genomic DNA library for cellular and secreted staphylococcal products that were expressed in vivo. The characterisation of two clones, which reacted with serum collected from a S. epidermidis-related endocarditis patient identified a staphylococcal pyruvate dehydrogenase complex E2 subunit and a novel secreted protein with homology to a Staphylococcus aureus staphyloxanthin biosynthesis protein and a secreted protein of unknown function described in Staphylococcus carnosus. Investigation of the secreted protein previously undetected in S. epidermidis, termed staphylococcal secretory antigen (SsaA), identified a potential marker of S. epidermidis-related endocarditis.
Resumo:
A survey of the existing state-of-the-art of turbine blade manufacture highlights two operations that have not been automated namely that of loading of a turbine blade into an encapsulation die, and that of removing a machined blade from the encapsulation block. The automation of blade decapsulation has not been pursued. In order to develop a system to automate the loading of an encapsulation die a prototype mechanical handling robot has been designed together with a computer controlled encapsulation die. The robot has been designed as a mechanical handling robot of cylindrical geometry, suitable for use in a circular work cell. It is the prototype for a production model to be called `The Cybermate'. The prototype robot is mechanically complete but due to unforeseen circumstances the robot control system is not available (the development of the control system did not form a part of this project), hence it has not been possible to fully test and assess the robot mechanical design. Robot loading of the encapsulation die has thus been simulated. The research work with regard to the encapsulation die has focused on the development of computer controlled, hydraulically actuated, location pins. Such pins compensate for the inherent positional inaccuracy of the loading robot and reproduce the dexterity of the human operator. Each pin comprises a miniature hydraulic cylinder, controlled by a standard bidirectional flow control valve. The precision positional control is obtained through pulsing of the valves under software control, with positional feedback from an 8-bit transducer. A test-rig comprising one hydraulic location pin together with an opposing spring loaded pin has demonstrated that such a pin arrangement can be controlled with a repeatability of +/-.00045'. In addition this test-rig has demonstrated that such a pin arrangement can be used to gauge and compensate for the dimensional error of the component held between the pins, by offsetting the pin datum positions to allow for the component error. A gauging repeatability of +/- 0.00015' was demonstrated. This work has led to the design and manufacture of an encapsulation die comprising ten such pins and the associated computer software. All aspects of the control software except blade gauging and positional data storage have been demonstrated. Work is now required to achieve the accuracy of control demonstrated by the single pin test-rig, with each of the ten pins in the encapsulation die. This would allow trials of the complete loading cycle to take place.
Resumo:
A simulation model has been constructed of a valve manufacturing plant with the aim of assessing capacity requirements in response to a forecast increase in demand. The plant provides a weekly cycle of valves of varying types, based on a yearly production plan. Production control is provided by a just-in-time type system to minimise inventory. The simulation model investigates the effect on production lead time of a range of valve sequences into the plant. The study required the collection of information from a variety of sources, and a model that reflected the true capabilities of the production system. The simulation results convinced management that substantial changes were needed in order to meet demand. The case highlights the use of simulation in enabling a manager to quantify operational scenarios and thus provide a rational basis on which to take decisions on meeting performance criteria.
Resumo:
Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.
Resumo:
Propionibacterium acnes is a Gram-positive bacterium that forms part of the normal flora of the skin, oral cavity, large intestine, the conjunctiva and the external ear canal. Although primarily recognized for its role in acne, P. acnes is an opportunistic pathogen, causing a range of postoperative and device-related infections. These include infections of the bones and joints, mouth, eye and brain. Device-related infections include those of joint prostheses, shunts and prosthetic heart valves. P. acnes may play a role in other conditions, including inflammation of the prostate leading to cancer, SAPHO (synovitis, acne, pustulosis, hyperostosis, osteitis) syndrome, sarcoidosis and sciatica. If an active role in these conditions is established there are major implications for diagnosis, treatment and protection. Genome sequencing of the organism has provided an insight into the pathogenic potential and virulence of P. acnes. © 2011 Expert Reviews Ltd.