2 resultados para user tracking

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce ReDites, a system for realtime event detection, tracking, monitoring and visualisation. It is designed to assist Information Analysts in understanding and exploring complex events as they unfold in the world. Events are automatically detected from the Twitter stream. Then those that are categorised as being security-relevant are tracked, geolocated, summarised and visualised for the end-user. Furthermore, the system tracks changes in emotions over events, signalling possible flashpoints or abatement. We demonstrate the capabilities of ReDites using an extended use case from the September 2013 Westgate shooting incident. Through an evaluation of system latencies, we also show that enriched events are made available for users to explore within seconds of that event occurring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.