13 resultados para ultracold quantum gases, electron microscopy
em Aston University Research Archive
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.
Resumo:
It is shown that chlorosulphonation is a major aid to the electron microscopy of polyethylene for various samples which had mostly been crystallized at high pressures and included at least a proportion of the so-called chain-extended form. It is confirmed that sheets of excess electron density are produced at lamellar surfaces, but also including lateral surfaces. This is due primarily to the incorporation of chlorine and sulphur rather than to added uranium. The time to achieve an overall reaction varies sensitively with morphology, decreasing as the number of diffusion channels increases. Crystallinity is gradually lost, but sufficient crystals remain when a sample has become uniform, and in their initial orientations, for diffraction studies to be possible. The technique has been used to demonstrate that, during melt crystallization, the thickness of one lamella changes in response to altered growth conditions. This is direct confirmation that lamellar thickness is determined by secondary nucleation at the growth front. The tapered profile of a growing lamella previously observed in thick crystals of various polymers has been observed for chain-folded polyethylene lamellae, providing further evidence that this is a general feature of melt growth. © 1977 Chapman and Hall Ltd.
Resumo:
Biofuels are promising renewable energy sources and can be derived from vegetable oil feedstocks. Although solid catalysts show great promise in plant oil triglyceride transesterification to biodiesel, the identification of active sites and operating surface nanostructures created during their processing is essential for the development of efficient heterogeneous catalysts. Systematic, direct observations of dynamic MgO nanocatalysts from a magnesium hydroxide-methoxide precursor were performed under controlled calcination conditions using novel in situ aberration corrected-transmission electron microscopy at the 0.1 nm level and quantified with catalytic reactivity and physico-chemical studies. Surface structural modifications and the evolution of extended atomic scale glide defects implicate coplanar anion vacancies in active sites in the transesterification of triglycerides to biodiesel. The linear correlation between surface defect density (and therefore polarisability) and activity affords a simple means to fine tune new, energy efficient nanocatalysts for biofuel synthesis. © 2009 Springer Science+Business Media, LLC.
Resumo:
A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.
Resumo:
A plethora of techniques for the imaging of liposomes and other bilayer vesicles are available. However, sample preparation and the technique chosen should be carefully considered in conjunction with the information required. For example, larger vesicles such as multilamellar and giant unilamellar vesicles can be viewed using light microscopy and whilst vesicle confirmation and size prior to additional physical characterisations or more detailed microscopy can be undertaken, the technique is limited in terms of resolution. To consider the options available for visualising liposome-based systems, a wide range of microscopy techniques are described and discussed here: these include light, fluorescence and confocal microscopy and various electron microscopy techniques such as transmission, cryo, freeze fracture and environmental scanning electron microscopy. Their application, advantages and disadvantages are reviewed with regard to their use in analysis of lipid vesicles.
Resumo:
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.
Resumo:
An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.
Resumo:
This investigation looks critically at conventional magnetic lenses in the light of present-day technology with the aim of advancing electron microscopy in its broadest sense. By optimising the cooling arrangements and heat transfer characteristics of lens windings it was possible to increase substantially the current density in the winding, and achieve a large reduction in the size of conventional magnetic electron lenses. Following investigations into the properties of solenoidal lenses, a new type of lens with only one pole-piece was developed. The focal properties of such lenses, which differ considerably from those.of conventional lenses, have been derived from a combination of mathematical models and experimentally measured axial flux density distributions. These properties can be profitably discussed with reference to "half-lenses". Miniature conventional twin pole-piece lenses and the proposed radial field single pole-piece lenses have been designed and constructed and both types of lenses have been evaluated by constructing miniature electron optical columns. A miniature experimental transmission electron microscope (TEM), a miniature scanning electron microscope (SEM) and a scanning transmission microscope (STEM) have been built. A single pole-piece miniature one million volt projector lens of only lOcm diameter and weighing 2.lkg was designed, built and tested at 1 million volts in a commercial electron microscope. iii. Preliminary experiments indicate that in single pole lenses it is possible to extract secondary electrons from the specimen in spite of the presence of the magnetic field of the probe-forming lens. This may well be relevant for the SEM in which it is desirable to examine a large specimen at a moderately good resolution.
Resumo:
The thesis is concerned with the electron properties of single-polepiece magnetic electron lenses especially under conditions of extreme polepiece saturation. The electron optical properties are first analysed under conditions of high polepiece permeability. From this analysis, a general idea can be obtained of the important parameters that affect ultimate lens performance. In addition, useful information is obtained concerning the design of improved lenses operating under conditions of extreme polepiece saturation, for example at flux densities of the order of 10 Tesla. It is shown that in a single-polepiece lens , the position and shape of the lens exciting coil plays an important role. In particular, the maximum permissible current density in the windings,rather than the properties of the iron, can set a limit to lens performance. This factor was therefore investigated in some detail. The axial field distribution of a single-polepiece lens, unlike that of a conventional lens, is highly asymmetrical. There are therefore two possible physical arrangements of the lens with respect to the incoming electron beam. In general these two orientations will result in different aberration coefficients. This feature has also been investigated in some detail. Single-pole piece lenses are thus considerably more complicated electron- optically than conventional double polepiece lenses. In particular, the absence of the usual second polepiece causes most of the axial magnetic flux density distribution to lie outside the body of the lens. This can have many advantages in electron microscopy but it creates problems in calculating the magnetic field distribution. In particular, presently available computer programs are liable to be considerably in error when applied to such structures. It was therefore necessary to find independent ways of checking the field calculations. Furthermore, if the polepiece is allowed to saturate, much more calculation is involved since the field distribution becomes a non-linear function of the lens excitation. In searching for optimum lens designs, care was therefore taken to ensure that the coil was placed in the optimum position. If this condition is satisfied there seems to be no theoretical limit to the maximum flux density that can be attained at the polepiece tip. However , under iron saturation condition, some broadening of the axial field distribution will take place, thereby changing the lens aberrations . Extensive calculations were therefore made to find the minimum spherical and chromatic aberration coefficients . The focal properties of such lens designs are presented and compared with the best conventional double-polepiece lenses presently available.
Resumo:
We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study experimentally investigated methyl chloride (MeCl) purification method using an inhouse designed and built volumetric adsorption/desorption rig. MeCl is an essential raw material in the manufacture of silicone however all technical grades of MeCl contain concentrations (0.2 - 1.0 % wt) of dimethyl ether (DME) which poison the process. The project industrial partner had previously exhausted numerous separation methods, which all have been deemed not suitable for various reasons. Therefore, adsorption/desorption separation was proposed in this study as a potential solution with less economic and environmental impact. Pure component adsorption/desorption was carried out for DME and MeCl on six different adsorbents namely: zeolite molecular sieves (types 4 Å and 5 Å); silica gels (35-70 mesh, amorphous precipitated, and 35-60 mesh) and granular activated carbon (type 8-12 mesh). Subsequent binary gas mixture adsorption in batch and continuous mode was carried out on both zeolites and all three silica gels following thermal pre-treatment in vacuum. The adsorbents were tested as received and after being subjected to different thermal and vacuum pre-treatment conditions. The various adsorption studies were carried out at low pressure and temperature ranges of 0.5 - 3.5 atm and 20 - 100 °C. All adsorbents were characterised using Brunauer Emmett Teller (BET), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) to investigate their physical and chemical properties. The well-known helium (He) expansion method was used to determine the empty manifold and adsorption cell (AC) regions and respective void volumes for the different adsorbents. The amounts adsorbed were determined using Ideal gas laws via the differential pressure method. The heat of adsorption for the various adsorbate-adsorbent (A-S) interactions was calculated using a new calorimetric method based on direct temperature measurements inside the AC. Further adsorption analysis included use of various empirical and kinetic models to determine and understand the behaviour of the respective interactions. The gas purification behaviour was investigated using gas chromatography and mass spectroscopy (GC-MC) analysis. Binary gas mixture samples were syringed from the manifold iii and AC outlet before and after adsorption/desorption analysis through manual sample injections into the GC-MS to detect and quantify the presence of DME and ultimately observe for methyl chloride purification. Convincing gas purification behaviour was confirmed using two different GC columns, thus giving more confidence on the measurement reliability. From the single pure component adsorption of DME and MeCl on the as received zeolite 4A subjected to 1 h vacuum pre-treatment, both gases exhibited pseudo second order adsorption kinetics with DME exhibiting a rate constant nearly double that of MeCl thus suggesting a faster rate of adsorption. From the adsorption isotherm classification both DME and MeCl exhibited Type II and I adsorption isotherm classifications, respectively. The strength of bonding was confirmed by the differential heat of adsorption measurement, which was found to be 23.30 and 10.21 kJ mol-1 for DME and MeCl, respectively. The former is believed to adsorb heterogeneously through hydrogen bonding whilst MeCl adsorbs homogenously via van der Waal’s (VDW) forces. Single pure component adsorption on as received zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) resulted in similar adsorption/desorption behaviour in similar quantities (mol kg-1). The adsorption isotherms for DME and MeCl on zeolite 5A, silica gels (35-70, amorphous precipitated and 35-60) and activated carbon 8-12 exhibited Type I classifications, respectively. Experiments on zeolite 5A indicated that DME adsorbed stronger, faster and with a slightly stronger strength of interaction than MeCl but in lesser quantities. On the silica gels adsorbents, DME exhibited a slightly greater adsorption capacity whilst adsorbing at a similar rate and strength of interaction compared to MeCl. On the activated carbon adsorbent, MeCl exhibited the greater adsorption capacity at a faster rate but with similar heats of adsorption. The effect of prolonged vacuum (15 h), thermal pre-treatment (150 °C) and extended equilibrium time (15 min) were investigated for the adsorption behaviour of DME and MeCl on both zeolites 4A and 5A, respectively. Compared to adsorption on as received adsorbents subjected to 1 h vacuum the adsorption capacities for DME and MeCl were found to increase by 1.95 % and 20.37 % on zeolite 4A and by 4.52 % and 6.69 % on zeolite 5A, respectively. In addition the empirical and kinetic models and differential heats of adsorption resulted in more definitive fitting curves and trends due to the true equilibrium position of the adsorbate with the adsorbent. Batch binary mixture adsorption on thermally and vacuum pre-treated zeolite 4A demonstrated purification behaviour of all adsorbents used for MeCl streams containing DME impurities, with a concentration as low as 0.66 vol. %. The GC-MS analysis showed no DME detection for the tested concentration mixtures at the AC outlet after 15 or 30 min, whereas MeCl was detectable in measurable amounts. Similar behaviour was also observed when carrying out adsorption in continuous mode. On the other hand, similar studies on the other adsorbents did not show such favourable MeCl purification behaviour. Overall this study investigated a wide range of adsorbents (zeolites, silica gels and activated carbon) and demonstrated for the first time potential to purify MeCl streams containing DME impurities using adsorption/desorption separation under different adsorbent pre-treatment and adsorption operating conditions. The study also revealed for the first time the adsorption isotherms, empirical and kinetic models and heats of adsorption for the respective adsorbentsurface (A-S) interactions. In conclusion, this study has shown strong evidence to propose zeolite 4A for adsorptive purification of MeCl. It is believed that with a technical grade MeCl stream competitive yet simultaneous co-adsorption of DME and MeCl occurs with evidence of molecular sieiving effects whereby the larger DME molecules are unable to penetrate through the adsorbent bed whereas the smaller MeCl molecules diffuse through resulting in a purified MeCl stream at the AC outlet. Ultimately, further studies are recommended for increased adsorption capacities by considering wider operating conditions, e.g. different adsorbent thermal and vacuum pre-treatment and adsorbing at temperatures closer to the boiling point of the gases and different conditions of pressure and temperature.
Resumo:
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.