36 resultados para twitter

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze a Big Data set of geo-tagged tweets for a year (Oct. 2013–Oct. 2014) to understand the regional linguistic variation in the U.S. Prior work on regional linguistic variations usually took a long time to collect data and focused on either rural or urban areas. Geo-tagged Twitter data offers an unprecedented database with rich linguistic representation of fine spatiotemporal resolution and continuity. From the one-year Twitter corpus, we extract lexical characteristics for twitter users by summarizing the frequencies of a set of lexical alternations that each user has used. We spatially aggregate and smooth each lexical characteristic to derive county-based linguistic variables, from which orthogonal dimensions are extracted using the principal component analysis (PCA). Finally a regionalization method is used to discover hierarchical dialect regions using the PCA components. The regionalization results reveal interesting linguistic regional variations in the U.S. The discovered regions not only confirm past research findings in the literature but also provide new insights and a more detailed understanding of very recent linguistic patterns in the U.S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of studies have been devoted to modeling the contents and interactions between users on Twitter. In this paper, we propose a method inspired from Social Role Theory (SRT), which assumes that a user behaves differently in different roles in the generation process of Twitter content. We consider the two most distinctive social roles on Twitter: originator and propagator, who respectively posts original messages and retweets or forwards the messages from others. In addition, we also consider role-specific social interactions, especially implicit interactions between users who share some common interests. All the above elements are integrated into a novel regularized topic model. We evaluate the proposed method on real Twitter data. The results show that our method is more effective than the existing ones which do not distinguish social roles. Copyright 2013 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social Media is becoming an increasingly important part of people’s lives and is being used increasingly in the food and agriculture sector. This paper considers the extent to which each section of the food supply chain is represented in Twitter and use the hashtag #food. We looked at the 20 most popular words for each part of the supply chain by categorising 5000 randomly selected tweets to different sections of the food chain and then analysing each category. We sorted the users by those who tweeted most frequently and categorised their position in the food supply chain. Finally to consider the indegree of influence, we took the top 100 tweeters from the previous list and consider what following these users have. From this we found that consumers are the most represented area of the food chain, and logistics is the least represented. Consumers had 51.50% of the users and 87.42% of the top words tweeted from that part of the food chain. We found little evidence of logistics representation for either tweets or users (0.84% and 0.35% respectively). The top users were found to follow a high percentage of their own followers with most having over 70% the same. This research will bring greater understanding of how people perceive the food sector and how Twitter can be used within this sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the proliferation of social media sites, social streams have proven to contain the most up-to-date information on current events. Therefore, it is crucial to extract events from the social streams such as tweets. However, it is not straightforward to adapt the existing event extraction systems since texts in social media are fragmented and noisy. In this paper we propose a simple and yet effective Bayesian model, called Latent Event Model (LEM), to extract structured representation of events from social media. LEM is fully unsupervised and does not require annotated data for training. We evaluate LEM on a Twitter corpus. Experimental results show that the proposed model achieves 83% in F-measure, and outperforms the state-of-the-art baseline by over 7%.© 2014 Association for Computational Linguistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent topics derived by topic models such as Latent Dirichlet Allocation (LDA) are the result of hidden thematic structures which provide further insights into the data. The automatic labelling of such topics derived from social media poses however new challenges since topics may characterise novel events happening in the real world. Existing automatic topic labelling approaches which depend on external knowledge sources become less applicable here since relevant articles/concepts of the extracted topics may not exist in external sources. In this paper we propose to address the problem of automatic labelling of latent topics learned from Twitter as a summarisation problem. We introduce a framework which apply summarisation algorithms to generate topic labels. These algorithms are independent of external sources and only rely on the identification of dominant terms in documents related to the latent topic. We compare the efficiency of existing state of the art summarisation algorithms. Our results suggest that summarisation algorithms generate better topic labels which capture event-related context compared to the top-n terms returned by LDA. © 2014 Association for Computational Linguistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of tweets collected over six days before, during and after the landing of the Mars Science Laboratory, known as Curiosity, in the Gale Crater on the 6th of August 2012. A sociological application of web science is demonstrated by use of parallel coordinate visualization as part of a mixed methods study. The results show strong, predominantly positive, international interest in the event. Scientific details dominated the stream, but, following the successful landing, other themes emerged such as fun, and national pride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to assess high-dimensional visualisation, combined with pattern matching, as an approach to observing dynamic changes in the ways people tweet about science topics. Design/methodology/approach - The high-dimensional visualisation approach was applied to three scientific topics to test its effectiveness for longitudinal analysis of message framing on Twitter over two disjoint periods in time. The paper uses coding frames to drive categorisation and visual analytics of tweets discussing the science topics. Findings - The findings point to the potential of this mixed methods approach, as it allows sufficiently high sensitivity to recognise and support the analysis of non-trending as well as trending topics on Twitter. Research limitations/implications - Three topics are studied and these illustrate a range of frames, but results may not be representative of all scientific topics. Social implications - Funding bodies increasingly encourage scientists to participate in public engagement. As social media provides an avenue actively utilised for public communication, understanding the nature of the dialog on this medium is important for the scientific community and the public at large. Originality/value - This study differs from standard approaches to the analysis of microblog data, which tend to focus on machine driven analysis large-scale datasets. It provides evidence that this approach enables practical and effective analysis of the content of midsize to large collections of microposts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words' sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media has become an effective channel for communicating both trends and public opinion on current events. However the automatic topic classification of social media content pose various challenges. Topic classification is a common technique used for automatically capturing themes that emerge from social media streams. However, such techniques are sensitive to the evolution of topics when new event-dependent vocabularies start to emerge (e.g., Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014). Therefore, traditional supervised classification methods which rely on labelled data could rapidly become outdated. In this paper we propose a novel transfer learning approach to address the classification task of new data when the only available labelled data belong to a previous epoch. This approach relies on the incorporation of knowledge from DBpedia graphs. Our findings show promising results in understanding how features age, and how semantic features can support the evolution of topic classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.