24 resultados para tumour necrosis factor blocker treatment
em Aston University Research Archive
Resumo:
The role of human granulocytes in the promotion of procainamide (PA) toxicity in vitro has been studied and one of the agents responsible for DNA strand scission and cell death in human target cells has been characterized. Crude peripheral blood mononuclear cells (cPBMNs) isolated by density centrifugation, and the lymphocyte cell lines--CCRF-HSB2 and WIL-2NS--were exposed to PA, and DNA strand breaks were quantified by fluorescent analysis of DNA unwinding. Therapeutic plasma concentrations of PA (0-50 microM) caused dose-dependent cytotoxicity, determined by dye exclusion, and strand breaks in cPBMNs incubated for 3 and 1.5 hr at 37 degrees, respectively. Using 50 microM PA a five-fold increase in DNA strand breaks was observed after 1.5 hr, with significant induction of strand breaks also being observed for 10 and 25 microM concentrations. Toxicity was much reduced in lymphocyte cell lines (maximal killing = 3.0% at 50 microM PA compared with 13.2% in cPBMNs). A similar decrease in toxicity was observed where N-acetyl procainamide (NAPA) was substituted for PA (less than 50% of strand breaks at all concentrations). Further investigations showed that the presence of a contaminating granulocyte population in the cPBMN fraction was responsible for the induction of PA toxicity. Incubation of a highly enriched granulocyte population with PA for 1 hr prior to exposure to purified peripheral blood mononuclear cells (pPBMNs) led to the complete restoration of the toxic effects. The resulting cyto- and genotoxicity were not significantly different to levels observed in cPBMNs. Significantly, incubation of granulocytes with NAPA did not induce toxicity in target pPBMNs. Ultrafiltration of granulocyte supernatants led to the identification of two toxic fractions of < 3000 and > 30,000 Da. Temporal studies showed that the toxicity associated with the < 3000 Da fraction appeared during the first 10-15 min incubation with PA whereas the > 30,000 Da fraction did not display significant toxicity until the 40-60 min period. Further assessment of the nature of these agents indicated that the 30,000 Da fraction was a protein. SDS-PAGE analysis showed an inducible 17,800 Da species appearing in granulocyte supernatants after 40 min incubation with PA. Dot blot analysis indicated that tumour necrosis factor alpha (TNF alpha) was present in the > 30,000 Da fraction. Evidence that TNF alpha was the high-molecular weight species responsible for PA-induced toxicity was obtained from neutralization assays employing an anti-TNF alpha antibody.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
beta-Hydroxy-beta-methylbutyrate (HMB; 50 microM) has been shown to attenuate the depression in protein synthesis in murine myotubes in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) with or without interferon-gamma (IFN-gamma), and angiotensin II (ANG II). The mechanism for the depression of protein synthesis by all three agents was the same and was attributed to activation of double-stranded RNA-dependent protein kinase (PKR) with the subsequent phosphorylation of eukaryotic initiation factor 2 (eIF2) on the alpha-subunit as well as increased phosphorylation of the elongation factor (eEF2). Myotubes expressing a catalytically inactive PKR variant, PKRDelta6, showed no depression of protein synthesis in response to either LPS or TNF-alpha, confirming the importance of PKR in this process. There was no effect of any of the agents on phosphorylation of mammalian target of rapamycin (mTOR) or initiation factor 4E-binding protein (4E-BP1), and thus no change in the amount of eIF4E bound to 4E-BP1 or the concentration of the active eIF4E.eIF4G complex. HMB attenuated phosphorylation of eEF2, possibly by increasing phosphorylation of mTOR, and also attenuated phosphorylation of eIF2alpha by preventing activation of PKR. These results suggest that HMB may be effective in attenuating muscle atrophy in a range of catabolic conditions.
Resumo:
Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.
Resumo:
Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.
Resumo:
Causative factors: Nutritional supplementation or pharmacological manipulation of appetite are unable to control the muscle atrophy seen in cancer cachexia. This suggests that tumour and/or host factors might be responsible for the depression in protein synthesis and the increase in protein degradation. An increased expression of the ubiquitin-proteasome proteolytic pathway is responsible for the increased degradation of myofibrillar proteins in skeletal muscle, and this may be due to tumour factors, such as proteolysis-inducing factor (PIF), or host factors such as tumour necrosis factor-α (TNF-α). In humans loss of adipose tissue is due to an increase in lipolysis rather than a decrease in synthesis, and this may be due to tumour factors such as lipid-mobilising factor (LMF) or TNF-α, both of which can increase cyclic AMP in adipocytes, leading to activation of hormone-sensitive lipase (HSL). Levels of mRNA for HSL are elevated twofold in adipose tissue of cancer patients, while there are no changes in lipoprotein lipase (LPL), involved in extraction of fatty acids from plasma lipoproteins for storage. Treatment for cachexia: This has concentrated on increasing food intake, although that alone is unable to reverse the metabolic changes. Agents interfering with TNF-α have not been very successful to date, although more research is required in that area. The only agent tested clinically that is able to interfere with the action of PIF is eicosapentaenoic acid (EPA). EPA attenuates protein degradation in skeletal muscle by preventing the increased expression of the ubiquitin-proteasome pathway, but has no effect on protein synthesis. When used alone EPA prevents further wasting in cachectic patients, and, when it is combined with an energy- and protein-dense nutritional supplement, weight gain is seen, which is totally lean body mass. These results suggest that mechanistic studies into the causes of cancer cachexia will allow appropriate therapeutic intervention.
Resumo:
Background: Loss of muscle protein is a common feature of wasting diseases where currently treatment is limited. This study investigates the potential of epigallocatechin-3-gallate (EGCg), the most abundant catechin in green tea, to reverse the increased protein degradation and rescue the decreased protein synthesis which leads to muscle atrophy. Methods: Studies were conducted in vitro using murine C2C12myotubes. Increased protein degradation and reduced rates of protein synthesis were induced by serum starvation and tumour necrosis factor-α (TNF-α). Results: EGCg effectively attenuated the depression of protein synthesis and increase in protein degradation in murine myotubes at concentrations as low as 10 μM. Serum starvation increased expression of the proteasome 20S and 19S subunits, as well as the proteasome ‘chymotrypsin-like’ enzyme activity, and these were all attenuated down to basal values in the presence of EGCg. Serum starvation did not increase expression of the ubiquitin ligases MuRF1 and MAFbx, but EGCg reduced their expression below basal levels, possibly due to an increased expression of phospho Akt (pAkt) and phospho forkhead box O3a (pFoxO3a). Attenuation of protein degradation by EGCg was increased in the presence of ZnSO4, suggesting an EGCg-Zn2+complex may be the active species. Conclusion: The ability of EGCg to attenuate depressed protein synthesis and increase protein degradation in the myotubule model system suggests that it may be effective in preserving skeletal muscle mass in catabolic conditions.
Resumo:
Patients with cancer often undergo a specific loss of skeletal muscle mass, while the visceral protein reserves are preserved. This condition known as cachexia reduces the quality of life and eventually results in death through erosion of the respiratory muscles. Nutritional supplementation or appetite stimulants are unable to restore the loss of lean body mass, since protein catabolism is increased mainly as a result of the activation of the ATP-ubiquitin-dependent proteolytic pathway. Several mediators have been proposed. An enhanced protein degradation is seen in skeletal muscle of mice administered tumour necrosis factor (TNF), which appears to be mediated by oxidative stress. There is some evidence that this may be a direct effect and is associated with an increase in total cellular-ubiquitin-conjugated muscle proteins. Another cytokine, interleukin-6 (IL-6), may play a role in muscle wasting in certain animal tumours, possibly through both lysosomal (cathepsin) and non-lysosomal (proteasome) pathways. A tumour product, proteolysis-inducing factor (PIF) is produced by cachexia-inducing murine and human tumours and initiates muscle protein degradation directly through activation of the proteasome pathway. The action of PIF is blocked by eicosapentaenoic acid (EPA), which has been shown to attenuate the development of cachexia in pancreatic cancer patients. When combined with nutritional supplementation EPA leads to accumulation of lean body mass and prolongs survival. Further knowledge on the biochemical mechanisms of muscle protein catabolism will aid the development of effective therapy for cachexia.
Resumo:
Objective: To evaluate the serum levels and diagnostic value of cytokines and acute phase proteins in patients with infective endocarditis (IE). Patients and methods: Serum samples from 63 patients diagnosed with IE and 71 control patients were analysed for the following markers: interleukin-6 (IL6), tumour necrosis factor-α (TNF-α), interleukin 1-β (IL1β), procalcitonin (PCT), lipopolysaccharide binding protein (LBP) and C-reactive protein (CRP). Results: Serum levels of IL6, IL1β and CRP were significantly elevated in patients with IE as compared to controls. PCT, TNF-α and LBP were not elevated. Conclusion: Serum CRP and IL6 are elevated in IE. IL 6 may aid in establishing the diagnosis. There was no correlation between IL 6 levels and CRP, causative microorganism, echocardiographic features or outcome. © 2007 The British Infection Society.
Resumo:
Propionibacterium acnes forms part of the normal flora of the skin, oral cavity, large intestine and the external ear. Historically, P. acnes is considered to be of low virulence; however, in recent years it has been found as the aetiological agent in various pathologies including acne vulgaris, endophthalmitis, endocarditis, osteomyelitis, sarcoidosis, prosthetic hip infections and sciatica. It currently remains unclear why this normally harmless commensal can cause infection and contribute to a number of clinically significant conditions. This thesis has sought to investigate the phenotypic, genetic and antigenic properties of P.acnes strains isolated from sciatica patients undergoing microdiscectomy, normal skin, blood cultures, prosthetic hips and acne lesions. Isolates' phenotype was examined by determining their biotype by analytical profile index, antimicrobial susceptibility, virulence factor expression and serotype. A molecular typing method for P.acnes was developed using random amplification of polymorphic DNA (RAPD). Patient serum was used to screen P.acnes strains for antigens expressed in vivo and the chemical composition determined. The serodiagnostic potential and inflammatory properties of identified antigens were assessed. The optimised and reproducible RAPD protocol classified strains into three major clusters and was found to distinguish between the serotypes I and II for a large number of clinical isolates. Molecular typing by RAPD also enabled the identification of a genotype that did not react with the type I or II monoclonal antibodies and these strains may therefore constitute a previously undiscovered subspecies of P.acnes with a genetic background different from the type I and II serotypes. A major cell associated antigen produced by all strains was identified and characterised. A serological assay based on the antigen was used to measure IgG and IgM levels in serum from patients with acne, sciatica and controls. No difference in levels of antibodies was detected. Inflammatory properties of the antigen were measured by exposing murine macrophage-like cells and measuring the release of nitric oxide and tumour necrosis factor-alpha (TNF-α). Only TNF-α was elicited in response to the antigen. The phenotypic, genotypic and antigenic properties of this organism may provide a basis for future studies on P.acnes virulence and provide an insight into its mechanisms of pathogenesis.
Resumo:
Many cytokines have been implicated in the inflammatory pathways that characterize rheumatoid arthritis (RA) and related inflammatory diseases of the joints. These include members of the interleukin-6 (IL-6) family of cytokines, several of which have been detected in excess in the synovial fluid from RA patients. What makes the IL-6 group of cytokines a family is their common use of the glycoprotein 130 (gp130) receptor subunit, to which they bind with different affinities. Several strategies have been developed to block the pro-inflammatory activities of IL-6 subfamily cytokines. These include the application of monoclonal antibodies, the creation of mutant form(s) of the cytokine with enhanced binding affinity to gp130 receptor and the generation of antagonists by selective mutagenesis of the specific cytokine/gp130 receptor-binding site(s). The rationale for the use of anti-cytokine therapy in inflammatory joint diseases is based on evidence from studies in vitro and in vivo, which implicate major cytokines such as interleukin-1 (IL-1), tumour necrosis factor (TNF)-alpha and IL-6 in RA pathogenesis. In particular, IL-6 subfamily antagonists have a wide range of potential therapeutic and research applications. This review focuses on the role of some of the IL-6 subfamily cytokines in the pathogenesis of the inflammatory diseases of the joints (IJDs), such as RA. In addition, an overview of the recently developed antagonists will be discussed.
Resumo:
Background: There is an inverse relationship between pocket depth and pocket oxygen tension with deep pockets being associated with anaerobic bacteria. However, little is known about how the host tissues respond to bacteria under differing oxygen tensions within the periodontal pocket. Aim: To investigate the effect of different oxygen tensions upon nuclear factor-kappa B (NF-?B) activation and the inflammatory cytokine response of oral epithelial cells when exposed to nine species of oral bacteria. Materials and Methods: H400 oral epithelial cells were equilibrated at 2%, 10% or 21% oxygen. Cells were stimulated with heat-killed oral bacteria at multiplicity of infection 10:1, Escherichia coli lipopolysaccharide (15 µg/ml) or vehicle control. Interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-a) levels were measured by enzyme-linked immunosorbent assay and NF-?B activation was measured by reporter vector or by immunohistochemical analysis. Results: Tannerella forsythensis, Porphyromonas gingivalis and Prevotella intermedia elicited the greatest epithelial NF-?B activation and cytokine responses. An oxygen-tension-dependent trend in cytokine production was observed with the highest IL-8 and TNF-a production observed at 2% oxygen and lowest at 21% oxygen. Conclusions: These data demonstrate a greater pro-inflammatory host response and cell signalling response to bacteria present in more anaerobic conditions, and hypersensitivity of epithelial cells to pro-inflammatory stimuli at 2% oxygen, which may have implications for disease pathogenesis and/or therapy.
Resumo:
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.