8 resultados para trimethoprim

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trimethoprim (TMP) is a dihydrofolate reductase (DHFR) inhibitor which prevents the conversion of dihydrofolic acid into tetrahydrofolic acid, resulting in the depletion of the latter and leading to bacterial death. Oral bioavailability of TMP is hindered by both its low solubility and low permeability. This study aims to prepare novel salts of TMP using anionic amino acids; aspartic and glutamic acid as counter ions in order to improve solubility and dissolution. TMP salts were prepared by lyophilisation and characterized using FT-IR spectroscopy, proton nuclear magnetic resonance (1HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Both the amino acids formed salts with TMP in a 1:1 molar ratio and showed a 280 fold improvement in solubility. Investigation of the microbiological activity of the prepared salts against TMP sensitive Escherichia coli showed that the new salts not only retained antibacterial activity but also exhibited higher zone of inhibition which was attributed to improved physicochemical characters such as higher solubility and dissolution. The results are an important finding that could potentially impact on faster onset of antibacterial activity and reduced therapeutic dose when administered to patients. Studies are underway investigating the effect of ion-pairing TMP with amino acids on the permeability profile of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principles of High Performance Liquid Chromatography (HPLC) and pharmacokinetics were applied to the use of several clinically-important drugs at the East Birmingham Hospital. Amongst these was gentamicin, which was investigated over a two-year period by a multi-disciplinary team. It was found that there was considerable intra- and inter-patient variation that had not previously been reported and the causes and consequences of such variation were considered. A detailed evaluation of available pharmacokinetic techniques was undertaken and 1- and 2-compartment models were optimised with regard to sampling procedures, analytical error and model-error. The implications for control of therapy are discussed and an improved sampling regime is proposed for routine usage. Similar techniques were applied to trimethoprim, assayed by HPLC, in patients with normal renal function and investigations were also commenced into the penetration of drug into peritoneal dialysate. Novel assay techniques were also developed for a range of drugs including 4-aminopyridine, chloramphenicol, metronidazole and a series of penicillins and cephalosporins. Stability studies on cysteamine, reaction-rate studies on creatinine-picrate and structure-activity relationships in HPLC of aminopyridines are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pneumonia caused by Pneumocystis carinii is ultimately responsible for the death of many acquired immunodeficiency syndrome (AIDS) patients. Large doses of trimethoprim and pyrimethamine in combination with a sulphonamide and/or pentamidine suppress the infection but produce serious side-effects and seldom prevent recurrence after treatment withdrawal. However, the partial success of the aforementioned antifolates, and also trimetrexate used alone, does suggest dihydrofolate reductase (DHFR) as a target for the development of antipneumocystis agents. From the DHFR inhibitory activities of 3'-substituted pyrimethamine analogues it was suggested that the 3'-(3'',3''-dimethyltriazen-1''-yl) substituent may be responsible for the greater activity for the P.carinii over the mammalian enzyme. Crystallographic and molecular modeling studies revealed considerable geometrical and electronic differences between the triazene and the chemically related formamidine functions that may account for the differences in DHFR inhibitory profiles. Structural and electronic parameters calculated for a series of 3'-(3'',3''-disubstitutedtriazen-1''-yl) pyrimethamine analogues did not correlate with the DHFR inhibitory activities. However, the in vitro screening against P.carinii DHFR revealed that the 3''-hydroxyethyl-3''-benzyl analogue was the most active and selective. Models of the active sites of human and P.carinii DHFRs were constructed using DHFR sequence and structural homology data which had identified key residues involved in substrate and cofactor binding. Low energy conformations of the 3'',3''-dimethyl and 3''-hydroxyethyl-3''-benzyle analogues, determined from nuclear magnetic resonance studies and theoretical calculations, were docked by superimposing the diaminopyrimidine fragment onto a previously docked pyrimethamine analogue. Enzyme kinetic data supported the 3''-hydroxyethyl-3''-benzyl moiety being located in the NADPH binding groove. The 3''-benzyl substituent was able to locate to within 3 AA of a valine residue in the active site of P.carinii DHFR thereby producing a hydrophobic contact. The equivalent residue in human DHFR is threonine, more hydrophilic and less likely to be involved in such a contact. This difference may account for the greater inhibitory activity this analogue has for P.carinii DHFR and provide a basis for future drug design. From an in vivo model of PCP in immunosuppressed rats it was established that the 3"-hydroxyethyl-3"-benzyl analogue was able to reduce the.P.carinii burden more effectively with increasing doses, without causmg any visible signs of toxicity. However, equivalent doses were not as effective as pentamidine, a current treatment of choice for Pneumocystis carinii pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral drug delivery is considered the most popular route of delivery because of the ease of administration, availability of a wide range of dosage forms and the large surface area for drug absorption via the intestinal membrane. However, besides the unfavourable biopharmaceutical properties of the therapeutic agents, efflux transporters such as Pglycoprotein (P-gp) and multiple resistance proteins (MRP) decrease the overall drug uptake by extruding the drug from the cells. Although, prodrugs have been investigated to improve drug partitioning by masking the polar groups covalently with pre-moieties promoting increased uptake, they present significant challenges including reduced solubility and increased toxicity. The current work investigates the use of amino acids as ion-pairs for three model drugs: indomethacin (weak acid), trimethoprim (weak base) and ciprofloxacin (zwitter ion) in an attempt to improve both solubility and uptake. Solubility was studied by salt formation while creating new routes for uptake across the membranes via amino acids transporter proteins or dipeptidyl transporters was the rationale to enhance absorption. New salts were prepared for the model drugs and the oppositely charged amino acids by freeze drying and they were characterised using FTIR, 1HNMR, DSC, SEM, pH solubility profile, solubility and dissolution. Permeability profiles were assessed using an in vitro cell based method; Caco-2 cells and the genetic changes occurring across the transporter genes and various pathways involved in the cellular activities were studied using DNA microarrays. Solubility data showed a significant increase in drug solubility upon preparing the new salts with the oppositely charged counter ions (ciprofloxacin glutamate salt exhibiting 2.9x103 fold enhancement when compared to the free drug). Moreover, permeability studies showed a 3 fold increase in trimethoprim and indomethacin permeabilities upon ion-pairing with amino acids and more than 10 fold when the zwitter ionic drug was paired with glutamic acid. Microarray data revealed that trimethoprim was absorbed actively via OCTN1 transporters while MRP7 is the main transporter gene that mediates its efflux. The absorption of trimethoprim from trimethoprim glutamic acid ion-paired formulations was affected by the ratio of glutamic acid in the formulation which was inversely proportional to the degree of expression of OCTN1. Interestingly, ciprofloxacin glutamic acid ion-pairs were found to decrease the up-regulation of ciprofloxacin efflux proteins (P-gp and MRP4) and over-express two solute carrier transporters; (PEPT2 and SLCO1A2) suggesting that a high aqueous binding constant (K11aq) enables the ion-paired formulations to be absorbed as one entity. In conclusion, formation of ion-pairs with amino acids can influence in a positive way solubility, transfer and gene expression effects of drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic skin commensal Propionibacterium acnes is an underestimated cause of human infections and clinical conditions. Previous studies have suggested a role for the bacterium in lumbar disc herniation and infection. To further investigate this, five biopsy samples were surgically excised from each of 64 patients with lumbar disc herniation. P. acnes and other bacteria were detected by anaerobic culture, followed by biochemical and PCR-based identification. In total, 24/64 (38%) patients had evidence of P. acnes in their excised herniated disc tissue. Using recA and mAb typing methods, 52% of the isolates were type II (50% of culture-positive patients), while type IA strains accounted for 28% of isolates (42% patients). Type III (11% isolates; 21% patients) and type IB strains (9% isolates; 17% patients) were detected less frequently. The MIC values for all isolates were lowest for amoxicillin, ciprofloxacin, erythromycin, rifampicin, tetracycline, and vancomycin (≤1mg/L). The MIC for fusidic acid was 1-2 mg/L. The MIC for trimethoprim and gentamicin was 2 to ≥4 mg/L. The demonstration that type II and III strains, which are not frequently recovered from skin, predominated within our isolate collection (63%) suggests that the role of P. acnes in lumbar disc herniation should not be readily dismissed. © 2013 Jess Rollason et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Misuse of biocides has encouraged the emergence of resistance and cross-resistance in certain strains. This study investigated resistance of triclosan-adapted Escherichia coli K-12 and E. coli O55 to antimicrobial agents and compared these to E. coli O157:H7. Cross-resistance in E. coli K-12 and E. coli O55 was observed however to a lesser extent than in E. coli O157:H7. Triclosan-adapted E. coli K-12 demonstrated cross-resistance to chloramphenicol, whereas triclosan-adapted E. coli O55 exhibited resistance to trimethoprim. In comparison, E. coli O157:H7 was resistant to chloramphenicol, tetracycline, amoxicillin, amoxicillin/clavulanic acid, trimethoprim, benzalkonium chloride and chlorohexidine suggesting strain specific rather than general resistance mechanisms. © 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms.