11 resultados para tree-based

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development of a tree-based decision model to predict the severity of pediatric asthma exacerbations in the emergency department (ED) at 2 h following triage. The model was constructed from retrospective patient data abstracted from the ED charts. The original data was preprocessed to eliminate questionable patient records and to normalize values of age-dependent clinical attributes. The model uses attributes routinely collected in the ED and provides predictions even for incomplete observations. Its performance was verified on independent validating data (split-sample validation) where it demonstrated AUC (area under ROC curve) of 0.83, sensitivity of 84%, specificity of 71% and the Brier score of 0.18. The model is intended to supplement an asthma clinical practice guideline, however, it can be also used as a stand-alone decision tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV). In particular, HRV causes changes in the QT intervals along the ECG waveforms. This work is aimed at analysing the influence of seven QT interval correction methods (based on population models) on the performance of ECG-fiducial-based identification systems. In addition, we have also considered the influence of training set size, classifier, classifier ensemble as well as the number of consecutive heartbeats in a majority voting scheme. The ECG signals used in this study were collected from thirty-nine subjects within the Physionet open access database. Public domain software was used for fiducial points detection. Results suggested that QT correction is indeed required to improve the performance. However, there is no clear choice among the seven explored approaches for QT correction (identification rate between 0.97 and 0.99). MultiLayer Perceptron and Support Vector Machine seemed to have better generalization capabilities, in terms of classification performance, with respect to Decision Tree-based classifiers. No such strong influence of the training-set size and the number of consecutive heartbeats has been observed on the majority voting scheme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel approach to the computation of primitive geometrical structures, where no prior knowledge about the visual scene is available and a high level of noise is expected. We based our work on the grouping principles of proximity and similarity, of points and preliminary models. The former was realized using Minimum Spanning Trees (MST), on which we apply a stable alignment and goodness of fit criteria. As for the latter, we used spectral clustering of preliminary models. The algorithm can be generalized to various model fitting settings, without tuning of run parameters. Experiments demonstrate the significant improvement in the localization accuracy of models in plane, homography and motion segmentation examples. The efficiency of the algorithm is not dependent on fine tuning of run parameters like most others in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovation is part and parcel of any service in today's environment, so as to remain competitive. Quality improvement in healthcare services is a complex, multi-dimensional task. This study proposes innovation management in healthcare services using a logical framework. A problem tree and an objective tree are developed to identify and mitigate issues and concerns. A logical framework is formulated to develop a plan for implementation and monitoring strategies, potentially creating an environment for continuous quality improvement in a specific unit. We recommend logical framework as a valuable model for innovation management in healthcare services. Copyright © 2006 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - Managers at the company attempt to implement a knowledge management information system in an attempt to avoid loss of expertise while improving control and efficiency. The paper seeks to explore the implications of the technological solution to employees within the company. Design/methodology/approach - The paper reports qualitative research conducted in a single organization. Evidence is presented in the form of interview extracts. Findings - The case section of the paper presents the accounts of organizational participants. The accounts reveal the workers' reactions to the technology-based system and something of their strategies of resistance to the system. These accounts also provide glimpses of the identity construction engaged in by these knowledge workers. The setting for the research is in a knowledge-intensive primary industry. Research was conducted through observation and interviews. Research limitations/implications - The issues identified are explored in a single case-study setting. Future research could look at the relevance of the findings to other settings. Practical implications - The case evidence presented indicates some of the complexity of implementation of information systems in organizations. This could certainly be seen as more evidence of the uncertainty associated with organizational change and of the need for managers not to expect an easy adoption of intrusive IT solutions. Originality/value - This paper adds empirical insight to a largely conceptual literature. © Emerald Group Publishing Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hazard and operability (HAZOP) studies on chemical process plants are very time consuming, and often tedious, tasks. The requirement for HAZOP studies is that a team of experts systematically analyse every conceivable process deviation, identifying possible causes and any hazards that may result. The systematic nature of the task, and the fact that some team members may be unoccupied for much of the time, can lead to tedium, which in turn may lead to serious errors or omissions. An aid to HAZOP are fault trees, which present the system failure logic graphically such that the study team can readily assimilate their findings. Fault trees are also useful to the identification of design weaknesses, and may additionally be used to estimate the likelihood of hazardous events occurring. The one drawback of fault trees is that they are difficult to generate by hand. This is because of the sheer size and complexity of modern process plants. The work in this thesis proposed a computer-based method to aid the development of fault trees for chemical process plants. The aim is to produce concise, structured fault trees that are easy for analysts to understand. Standard plant input-output equation models for major process units are modified such that they include ancillary units and pipework. This results in a reduction in the nodes required to represent a plant. Control loops and protective systems are modelled as operators which act on process variables. This modelling maintains the functionality of loops, making fault tree generation easier and improving the structure of the fault trees produced. A method, called event ordering, is proposed which allows the magnitude of deviations of controlled or measured variables to be defined in terms of the control loops and protective systems with which they are associated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In multicriteria decision problems many values must be assigned, such as the importance of the different criteria and the values of the alternatives with respect to subjective criteria. Since these assignments are approximate, it is very important to analyze the sensitivity of results when small modifications of the assignments are made. When solving a multicriteria decision problem, it is desirable to choose a decision function that leads to a solution as stable as possible. We propose here a method based on genetic programming that produces better decision functions than the commonly used ones. The theoretical expectations are validated by case studies. © 2003 Elsevier B.V. All rights reserved.